MACHINE CONTROLLER CP-9200SH/SVB MOTION CONTROLLER USER'S MANUAL

MECHATROLINK-COMPATIBLE TYPE

This manual describes the motion control module (SVB module), one of the modules of Machine Controller CP-9200SH (hereafter called "CP-9200SH").
The SVB module can be connected with servos and I/Os by means of high-speed field network MECHATROLINK (hereafter called "MECHATROLINK") and with CP-216 transmission-capable inverters (VS-616G5, VS-676H5) by means of CP-216 transmission. The number of connected stations is dependent on the parameter setting and slave equipment.
This manual describes the software of the SVB module (basic specifications, functions, examples of user programs, and motion parameters).
For the hardware of the SVB module (outside drawing, indicator lamps, setting switches, and connectors), refer to the Machine Controller CP-9200SH User's Manual (SIE-C879-40.1).
The CP-717, which is described in the document, refers to the Control Pack CP-717 (hereafter called "CP-717"), one of the peripheral units of CP-9200SH.
Refer to the following CP-9200SH-related documents.
<Relevant manuals $>$

Manual No.	Manual name
SIE-C873-16.4	FDS System Installation Manual
SIE-C877-17.4	Controt Pack CP-717 Operation Manual Vol.1
SIE-C877-17.5	Control Pack CP-717 Operation Manual Vol.2
TOE-C877-17.7	Control Pack CP-717 Instructions
CHE-C879-40	Ultra-high Speed Machine Controller CP-9200SH
KAE-C879-40	Super-high Speed Machine Controller CP-9200SH
SIE-C879-40.1	Machine Controller CP-9200SH User's Manual
SIE-C879-40.3	Machine Controller CP-9200SH Programming Manual
SIE-C879-40.4	Machine Controller CP-9200SH/PO-01Motion Controller User's Manual

Windows 95 and Windows NT4.0 are trademarks of Microsoft corporation, USA.
Ethernet is a registered trademark of Xerox USA Corp.

SAFETY PRECAUTIONS

For correct use, be sure to read the Instruction and Maintenance Manuals, this supplementary manual, and other attach documents thoroughly before use (installation, operation, maintenance, inspection, etc.). Also, be sure to use t equipment only after acquiring a thorough knowledge of the equipment, safety information, and all precautions.
Be sure to store the documents in a place where they may be readily available for anyone using the device.

- "Safety Symbols" Used in this Manual

In this manual, the following symbols are used according to the descriptions on safety.

In this manual, matters that do not correspond to "WARNING" or "CAUTION" should be adhered to by the user a are indicated next to the relevant items.

1 INSTALLATION

\triangle
 WARNING

Be sure to perform installation and removal after turning OFF the power.
There is danger of electric shock, serious injury, or death if work is performed with the power ON.

4. CAUTION

- Use this product in an environment described in the Machine Controller CP-9200SH User's Manual (SIE-C879-40.1).
Electric shock, fire, or malfunction may occur if this product is used in an environment with high temperature, high humidity, dust, corrosive gas, vibration, or shock.
Specifically, avoid use in the following environments.
- Places exposed to direct sunlight or places where the ambient temperature falls outside the range, 0 to $+55^{\circ} \mathrm{C}$.
- Places where the relative humidity falls outside the range of 5 to 95%, and places where dew condensation may occur due to sudden changes in humidity.
- Places with corrosive gas or flammable gas.
- Places where vibration or shock may be transmitted directly to CP-9200SH.
- Places where this product may get splashed with water, oil, chemicals, etc.
- This product should be installed in accordance with the instructions described in the Instruction Manual.

Improper installation may cause an accidental fall, failure, or malfunction.
(1) Fasten mounting screws securely Be sure to securely fasten the mounting screws for CP-9200SH and the fixing screws for terminal blocks so as not to allow them to loosen. A loose screw may result in the malfunction of the CP-9200SH.
(2) Install this product correctly.
 Incorrect installation may lead to abnormal heat generation and failure.

Do not put foreign matter such as wire strips into the unit.
Such matter may cause fire, failure, or malfunction.

A CAUTION

Connect the power supply conforming to the rated power.
Connecting a power source not conforming to the rated power may cause fire.:
CP-9200SH supply voltage

For the PS-01 power supply
85 VAC to 132 VAC
or 90 VDC to 140 VDC
For the PS-02 power supply
170 VAC to 230 VAC
For the PS-03 power supply
19.2 VDC to 28.8 VDC

Only qualified personnel should be allowed to work with wiring with the manual.
Improper wiring may cause electric shock, failure, or fire.

CONNECT THE INTERFACE SECURELY!

Insert and fix the connectors of the various interface cables to be connected to CP-9200SH securely.

WHAT SHOULD BE DONE WHEN POWER SUPPLY IS UNSTABLE?

- When power supply is unstable, connect a line fitter to the power supply line.
This will prevent malfunction of the CP-9200SH as a result of noise.

LAY THE EXTERNAL WIRING CORRECTLY.

Select the I/O lines (external wiring) for connecting CP-9200SH with external equipment in consideration of the following.

- Mechanical strength
- Influence of noise
- Wiring distance
- Signal voltage, etc.

Lay and wire I/O lines apart from power lines at the interior and exterior of the control panel.
This will help in reducing the influence of noise.
(Wire rack)

3 PRECAUTIONS UPON USE

\! WARNING

- Do not touch the terminals while the power is ON.

There is danger of electric shock.

- Provide an emergency stop circuit, interlock circuit, etc., at the exterior of CP-9200SH.

When it is anticipated that a failure of the CP-9200SH may cause operators to be hurt or products or peripheral units to be damaged, incorporate an emergency stop circuit or interlock circuit outside the CP-9200SH.
To start up the CP-9200SH by connecting a machine, make, sure that the CP-9200SH can be stopped at any time for an emergency.

\triangle CAUTION

Changing the program, performing forced output, and performing operations such as RUN, STOP, etc., while CP-9200SH is running may cause program errors and operation errors which may lead to machine damage or to accidents.
Perform these upon adequate verification and with the utmost care.

. CAUTION

Turn ON the power in proper order.
An erroneous order may lead to machine damage or an accident.

Turn ON the power of the SERVOPACK first!
First, turn ON the power of the SERVOPACK.
If CP-9200SH is started in advance, the system may malfunction or be damaged due to delays in input-output signals of the SERVOPACK.
Turn ON the power of the SERVOPACK simultaneously or in advance of the CP-9200SH.

4 MAINTENANCE AND DISPOSAL

\triangle WARNING

Connect plus \oplus and minus Θ poles of the battery correctly.
Do not charge, disassemble, heat up, throw into fire, or short-circuit the battery.
There is danger of explosion or fire.

. CAUTION

Handle the product as industrial waste upon disposal.
\square

- Do not disassemble or modify.

There is danger of fire, failure, or malfunction.

PAY ATTENTION TO THE BATTERY LIFE.

- Pay attention to the battery life.

Lighting of the Battery Alarm lamp indicates the end of a battery's life. Replace with a new battery following the battery replacement procedure.

5 GENERAL PRECAUTIONS

PRECAUTIONS ON APPLICATION

CP-9200SH is not designated or manufactured for use in devices or systems that concern people's lives.
Users who intend to use the product described in this manual for special purposes such as for devices or systems relating to transportation, medical, space aviation, atomic power control, or underwater use must contact your Yaskawa representative beforehand.
This product has been manufactured under strict quality control guidelines. However, if this product is to be installed in any location in which a failure of CP-9200SH involves a life and death situation or in a facility where failure may cause a serious accident, safety devices MUST be installed to minimize the likelihood of any accident.

1. OUTLINE 1-1
1.1 System Configuration 1-2
1.1.1 Configuration of CP-9200SH 1-2
1.2 How to Run the SVB Module 1-6
1.2.1 Setting the Module No 1-10
1.2.2 MECHATROLINK Assignment 1-11
1.2.3 Setting Motion Fixed Parameters 1-18
1.2.4 Setting Initial Values of Motion Setting Parameters 1-19
1.2.5 Setting SERVOPACK Parameters 1-20
1.2.6 Monitoring Running Status (Control Data) 1-21
1.3 Module No. and Motion Parameter Register No. 1-23
1.4 Outlines of functions 1-25
1.4.1 Outlines of motion commands 1-25
1.5 Hot Swapping 1-27
1.6 Precautions on Usage 1-28
2 BASIC SPECIFICATIONS 2-2
3 FUNCTIONAL DESCRIPTIONS AND EXAMPLES OF USER PROGRAMS 3-1
3.1 Setting Basic Motion Parameters 3-2
(1) Reference units 3-2
(2) Electronic gear 3-2
(3) Axis selection 3-5
(4) Position references 3-5
(5) Position monitoring 3-8
(6) Speed references 3-9
3.2 Positioning 3-11
3.3 External Positioning (EX_POSING) 3-14
3.4 Zero Point Return 3-17
3.4.1 DEC + Phase-C Pulse 3-17
3.4.2 ZERO Signal. 3-17
3.4.3 DEC + ZERO signal 3-18
3.4.4 Phase-C Pulse 3-18
3.4.5 An Example of Zero Point Return Methods 3-19
3.5 Interpolation (INTERPOLATE) 3-23
3.6 Interpolation with Position Detecting Function (LATCH) 3-24
3.7 Constant Speed Feed (FEED) 3-25
3.8 Constant Step Feed (STEP) 3-27
3.9 Zero Point Setting (ZSET) 3-30
4 I/O AND INVERTER 4-1
$4.1 \mathrm{I} / \mathrm{O}$ and Inverter 4-2
4.2 Setting Transmission Parameters 4-3
4.2.1 The Number of Connectable Slave Stations 4-4
4.3 Setting I/O Assignment 4-6
4.4 Types of Messages 4-7
4.5 Control Data Configuration 4-8
(1) RIO-01, RIO-06 4-8
(2) Inverter 4-8
(3) MP930 I/O unit 4-8
(4) Absocoder 4-8
4.6 Control Command/Response Data 4-9
4.7 VS-616G5 Inverter Connection Example 4-13
4.7.1 Prepared Items and Startup Procedure. 4-13
4.7.2 216IF/G5 Module Specifications 4-13
4.7.3 Mounting Procedure 4-15
4.7.4 Wiring 4-17
4.7.5 VS-616G5 Constant Settings 4-19
4.7.6 MECHATROLINK Definitions 4-21
4.7.7 Creating a Ladder Logic Program 4-22
5 MOTION PARAMETERS 5-1
5.1 List of Motion Parameters 5
5.1.1 List of Motion Fixed Parameters 5
5.1.2 List of Motion Setting Parameters 5-
5.1.3 List of Motion Monitoring Parameters 5-1
5.2 Details of Motion Parameters. 5-1
5.2.1 Details of Motion Fixed Parameters 5-1
5.2.2 Details of Motion Setting Parameters 5-1
5.2.3 Details of Motion Monitoring Parameters 5-2
5.3 Examples of Motion Parameter Settings 5-3
5.3.1 Examples of Motion Fixed Parameter Settings 5-3
5.3.2 Examples of Motion Setting Parameter Settings 5-3
5.4 User Constants of MECHATROLINK Servo SGD- $\square \square \square \mathrm{N}$ 5-4
6 ABSOLUTE VALUE DETECTION 6-
6.1 Mechanism of the absolute value detecting function 6-
6.1.1 Outline of the function 6
6.1.2 Mechanism of the absolute position detection 6-
6.2 Start-up of the absolute value detecting function 6-
6.2.1 Procedure for starting up the system 6
6.2.2 Setting the related parameters 6
6.2.3 Initialization of the absolute encoder 6
6.3 How to use the absolute encoder 6
6.3.1 Using on a finite-length axis. 6
6.3.2 When using on an infinite-length axis 6-1
7 THROUGH COMMAND MODE 7-
7.1 Through command mode 7
7.2 Motion parameters to be used when the through command mode is selected 7.
7.2.1 Motion fixed parameter 7.
7.2.2 Motion setting parameters 7
7.2.3 Motion monitoring parameters 7
7.3 Unusable MECHATROLINK commands 7
7.4 Processes that are performed by the system on MECHATROLINK communications 7
7.4.1 Connection control 7
7.4.2 Watchdog timer process 7
7.4.3 Interpolation issuing segment distribution 7
7.5 Precautions 7

1 outline

This chapter describes the system configuration diagram, the operating method, and the outline of units.
Be sure to read through this chapter as it provides the basis for using the module.

1.1 System Configuration

The CP-9200SH is an integrated controller provided with all general functions required for a machin controller.

Using the user programs allows users to freely design sequences suitable for machines or motion control.
The CP-9200SH consists of the following modules. Refer to the Machine Controller CP-9200SH User' Manual (SIE-C879-40.1) for details of each module.

1.1.1 Configuration of CP-9200SH

- Power supply module

Available for $24 \mathrm{~V}, 100 \mathrm{~V}, 200 \mathrm{~V}$.

- Mounting base

A short mounting base and long mounting base are available.
Up to 4 mounting bases can be connected.

- CPU Module

Up to 24 CPU modules can be mounted. Each of them executes user programs independently.

- Motion module

There are three types of modules: SVA module of the analog output type, PO-01 module of th pulse-train output type, and SVB module of the MECHATROLINK compatible digital outpu type (this module). Up to 16 motion modules, including all types, can be connected.
The SVB module has position control functions such as positioning, zero point returr interpolation, constant speed feed and constant step feed, and can be connected wit MECHATROLINK compatible servo drivers and I/Os up to 14 axes. Up to 16 modules (modul No. $=1$ to 16) can be mounted, which can control up to 224 axes.
It can also be connected with CP-216 transmission-capable inverters (CVS-616GS, VS-676H5 by means of CP-216 transmission.
The SVA module can perform position control, speed control, torque control and phase contro independently on each axis. Up. to 11 SVA modules (module No. $=1$ to 11) can be mounted which can control up to 64 axes.
The PO-01 module has position control functions such as positioning, zero point return interpolation, constant speed feed and constant step feed, and can be connected with pulse moto drivers up to 4 axes. Up to 16 modules (module No. $=1$ to 16) can be mounted, which can contre up to 64 axes.

- Communication module

Various interface modules such as the CP-215 interface module, CP-216 interface module, an RS-232 interface module are available. The CP-717 is connected to the RS-232 interface modul or CP-215 interface module.

- I/O modules

Can be connected with the local I/O and the 2000 series I/O modules.

- Others

A module for connecting between mounting bases is also available.

Table 1.1 Descriptions of register types

Register Type	Description
SW (System register)	Hoids the operating status of the system or error information.
IW	
(Input register)	
OW	
(Output register)	The I/O register directly connected to the hardware which is accessible to the CPU module such as DI/DO and the 2000 series I/O, and the CP-215 or CP-217 which is accessible by a transmission route. Hardware and I/O registers are allocated at the CP-717 Window Setting. IW(OW)C000 to IW(OW)FFFF are used for transferring motion parameters. Accessible to both CPU\#1 and CPU\#2.
MW (DWG common register)	The general-purpose register common to each DWG. Used for transferring data between DWGs. Transferring data between CPUs is also allowed by defining a part of this register at CP-717. Refer to the "Shared Memory Allocation Screen" of CP-717.
DW (DWG individual register)	The general-purpose register specific to each DWG. Therefore, one DWG register cannot refer to other DWG D register. Using this register will make it simple to package software.

Fig. 1.1 Appearance of the CP-9200SH short mounting base

Fig. 1.3 Connection between CP-9200SH and its peripheral units (Software)

Fig. 1.4 Connection between CP-9200SH and its peripheral units (Hardware)

1.2 How to Run the SVB Module

1

First, assign an SVB module number. Then, by simply setting motion parameters, motion control can b performed. Designing these motion parameters freely by user CPU module programs provides motion contrc suitable for the machine.

- Assigning a module No.

Assign a module No. on the "Module Configuration" window of CP-717. Also, assign connectin unit and station Nos. on the "I/O Assignment" window of MECHATROLINK.

- Data transfer between the CPU module and SVB module

Data are transferred via motion parameters. There are three types of motion parameter as follows
(1) Motion fixed parameters

These parameters will, once set, normally be never changed as long as the configuration specifications of the machine are not changed. Set them on the "Fixed parameter" window c CP-717.
If the motion fixed parameters are changed, motion monitoring parameters for monitoring th target position, etc., will be initialized.
(2) Motion setting parameters

These parameters are used for giving commands from the CPU module to the SVB module. A the beginning of high-speed scanning, they are transferred to the SVB module in a batcl Motion control can be performed by simply setting these motion parameters.
(3) Motion monitoring parameters

These parameters are used for giving reports from the SVB module to the CPU module. At th beginning of high-speed scanning, they are transferred to the CPU module in a batch. Thes are used for application control and debugging user programs.

Let's run the Servomotor by using the "parameter setting" function of CP-717 without creating a user program.
\square
\downarrow

Connect CP-717 to CP-9200SH.
\downarrow
Turn ON the power of the servo driver, CP-9200SH and CP-717. (Note)
\downarrow
Register the SVB module on the "Module Configuration" window of CP-717, and assign a module No. on the "I/O Assignment" window of MECHATROLINK.
\downarrow
By using the "parameter setting" function of CP717 , set the motion parameters as follows:
(1) Set the motion fixed parameters on the "Fixed parameter" window.
(2) Set the parameters necessary for activating the applicable control mode on the "Set parameter" window.
(3) Tum ON the bit to select the position control mode on the "Set parameter" window.
(4) Turn ON the "RUN" signal (RUN Command) on the "Set parameter" window.
(5) Set the motion command code on the "Set parameter" window.

<Reference>

Control Pack CP-9200SH User's Manual (SIE-C879-40.1)
<Reference>
Control Pack CP-717 Operation Manual (SIE-C877-17.4, -17.5)

<Reference>

Control Pack CP-9200SH User's Manual (SIE-C879-40.1)

Refer to 1.2.1 "Setting the Module No."

Refer to 1.2.3 "Setting Motion Fixed Parameters" and 1.2.4 "Setting Initial Values of Motion Setting Parameters".

Fig. 1.5 Servomotor Operating Procedure

Note
Turn ON the power of CP-9200SH after or at the same time as the servo driver.
 Now, let's create a simple program. Here is an example of the constant speed feed which is the simplest movement for performance tests on the Servomotor.

Set the motion parameters which have been set by using the "parameter setting" function in Fig. 1. "Servomotor Operating Procedure" on a user program.

<Preconditions>
Motor rated revolution speed
$: \mathrm{NR}=3000 \mathrm{r} / \mathrm{min}$
Feedback pulse resolution
: $\mathrm{FBppr}=2048 \mathrm{ppr}$
Set the above motion fixed parameters on the "Fixed parameter" window of CP-717.
<Operating conditions>
Linear acceleration time
Motion command code
: $\mathrm{NACC}=1 \mathrm{sec}$.
Rapid speed feed
: Constant feed speed

In the above conditions, the SERVOPACK is used on the first axis of module No. 1.
Also, set the above motion setting parameters on the "Set parameter" window of CP-717.

RUNPB	RUN	RUN Command to the driver
IB00104	\bigcirc	
ACCEL		Turning on IB00104 starts the constant speed feed.
IFON		
-300	$\begin{aligned} & \mathrm{RV} \\ & \Rightarrow \text { OLCO22 } \\ & \text { MCMDCODE } \end{aligned}$	When the acceleration (IB00105) is turned on, the constant speed feed is performed at 300,000 pulses $/ \mathrm{min}$ in the acceleration time (ACC). Turning off IB00105
-7	\Rightarrow OWC020	
ELSE	RV	decelerates the feed to stop in the same time as the acceleration time (ACC).
FO	$\begin{aligned} & \Rightarrow \quad \text { OLCO22 } \\ & \text { MCMDCODE } \end{aligned}$	(Note) $1=1,000$ pulses $/ \mathrm{min}$ is applied to the rapid feed (RV:OLCO22) in pulses. Therefore, set 300 for
F-7	\Rightarrow OWCO20	
IEND DEND		

Fig. 1.7 Constant Speed Feed Command (DWG H01)
The example in Fig.1.7 has been simplified, however, each register, etc., can be freely controlled by the user's program.

1.2.1 Setting the Module No.

Set the module No. on the "Module Configuration" window of CP-717 as follows.
For the details, refer to the Control Pack CP-717 Operation Manual (SIE-C877-17.4, -17.5).
(1) Register the SVB to the slot where the SVB module is mounted.
(2) Set the module No. in the "Cir No." column.
(3) The module No. setting is completed with the above procedure. Upon completion of settin the range of registers (IW/OW) for motion parameters is automatically displayed in th "Register Range" column.
(4) Set the registers (IW/OW) used for MECHATROLINK assignment in "I/O Start Register" ar "I/O End Register" columns.
(5) Save the module configuration definition.

Configuration of the "Module. Configuration" window

(1) Rack information

Select the type of rack to which the module is connected.
(2) Module information

The module information is displayed.

1.2.2 MECHATROLINK Assignment

Set the type of unit to be connected to the SVB module and the station No.

- Setting parameters

Set the parameters necessary for using the MECHATROLINK transmission system.

Configuration of the "Transmission Parameters" window

(1)

(1) Configuration Information

RACK\#: Displays the rack No. to which MECHATROLINK is defined.
SLOT\#: Displays the slot No. to which MECHATROLINK is defined.
CIR\#: Displays the circuit No.
Register range: Displays the I/O register range.
(2) Master/Slave

Set whether the PLC is used as a master station or slave station.
Always select "Master". Slave function is not provided for this module.
(3) Own Station Address

In the case of a master station, fix the own station address to 0 .
In the case of a slave station, set a station address between 1 and 30 .
(4) Message Trust Level

Set the error recovery method for sending MEMOBUS commands.
0 : A command is sent only once, and the response from the other side is waited indefinitely.
1: A command is sent once, and if there is no response in 8 seconds, the command is sent again.
2: When sending a command, the data are sent twice in succession word by word, and the response from the other side waits indefinitely.
The transmission reliability improves but the transmission time increases twofold.
(5) Maximum number of slave stations

Number of slave stations	Transmission speed	Transmission cycle
2	4 Mbps	$500 \mu \mathrm{~s}$
2	10 Mbps	$250 \mu \mathrm{~s}$
3	2 Mbps	1 ms
6	4 Mbps	1 ms
6	10 Mbps	$500 \mu \mathrm{~s}$
7	2 Mbps	2 ms
14	4 Mbps	2 ms
14	10 Mbps	1 ms
15	2 Mbps	4 ms
29	4 Mbps	4 ms
29	10 Mbps	2 ms
30	10 Mbps	4 ms

Note
When connecting MECHATROLINK SERVOPACK, set the Max. No. of slave stations setting 14 stations, 4 Mbps , and 2 ms .

- 1/O assignment

1 Setting assignment data
Set the I/O units to be connected to MECHATROLINK and transmission definition data with the "I/O Assignment" tab.

Configuration of the "I/O Assignment" window

(1) ST\#

Station Nos. are displayed. Up to 14 stations can be set.
(2) TYPE

Set the I/O units to be connected to the station from the combo box menu.

VS-676H5		
VS-676H5T		
VS-616G5		
RIO-01	Distributed I/O	
RIO-06	RIO-06	
ABS_CODER	Distributed I/O	
JEPMC-IO350	Distributed I/O	
SGD- $\square \square \square \mathrm{N}$		
SGDB- $\square \square$ AN	SERVOPACK	

(3) D

Set the disable condition of the input register.
$\sqrt{3 / 2}:$
$\sqrt{4}$: enable
: disable
(5) INPUT, SIZE

Set the starting input register No. and the number of registers (size). The number of registers is automatically set. Do not overlap the register range between stations. The register No. can be sel within the range between the start register No. and end register No. designated on the "Module Configuration" window.
This setting is not available when TYPE is SERVOPACK
"Module Configuration" window

(5) D

Set the disable condition of the output register.

(6) OUTPUT, SIZE

Set the starting output register No. and the number of registers (size). The number of registers automatically set. Do not overlap the register range between stations. The register No. can be st within the range between the start register No. and end register No. specified on the "Modu] Configuration" window.
This setting is not available when TYPE is SERVOPACK.
(7) SCAN

Set the scan for I/O service. When TYPE is SERVOPACK, fix it to High.

High	$:$	high-speed scan
Low	$:$	low-speed scan

(8) Station name

Input comments for each station with up to 32 characters.

2 Deleting assignment data
(1) Delete assignment data for a station as follows:

Move the cursor to the line of the station to be deleted, and choose "Assignment Delete (A)" from the "Edit (E)" menu.

The data assigned to the station is deleted.
EMECHATROLINKICERFI RIGHTING 9200SHSCPU1 CP-92005H Offline

- I/O map

The PLC I/O assignment conditions are displayed with the "I/O Map" tab. The I/O register ma defined on the "I/O Assignment" window is displayed, and cannot be changed.

Configuration of the "I/O Map" window

HI : assigned to the high scan input
HO : assigned to the high scan output
LI . : assigned to the low scan input
LO : assigned to the low scan output

Status

The data that MECHATROLINK is currently transmitting are displayed with the "Status" tab. In this tab window, only the status is displayed, and each set value cannot be changed.

Configuration of the "Status" window

The meaning of each item is the same as that of the "I/O Assignment" tab, except the "STS" column marked by (1).
(1) STS

In the online mode, the details of the MECHATROLINK transmission status are displayed in hexadecimal. The meaning of each bit is as follows. Nothing is displayed in the offline mode.

1.2.3 Setting Motion Fixed Parameters

Set the fixed parameters necessary for servo adjustment on the "Fixed parameter" window of CP-717. Fo details, refer to the Control Pack CP-717 Operation Manual (SIE-C879-17.4, -17.5).

Configuration of the "Fixed parameter" window

(1) Axis No.

Select the axis No. from axis 1 to axis 4 . Fixed parameters should be set in axes.
(2) Servo Pack

The type of SERVOPACK is displayed.
(3) No.

Fixed parameter Nos. are displayed.
(4) Name

Parameter names are displayed.
(5) Set data

Input (select) parameter values. The setting of each parameter is shown in Table 24.3.
(6) Unit

Parameter units are displayed.

Note
When the current value of Bit 0 of motion setting parameter OW $\square \square 01$ "RUN Command" is ON the motion fixed parameters cannot be saved.

1.2.4 Setting Initial Values of Motion Setting Parameters

Set necessary parameters on the "Set parameter" window of CP-717. The data set here will automatically be set as the initial values of motion setting parameters at the time of turning ON the power of CP-9200SH.
For details, refer to the Control Pack CP-717 Operation Manual (SIE-C879-17.4, -17.5).
Configuration of the "Set parameter" window

(1) Axis No.

Select the axis No. from axis 1 or axis 2 . Parameters should be set in axes.
(2) Servo Pack

The type of SERVOPACK is displayed.
(3) No.

Set parameter Nos. are displayed.
(4) Name

Parameter names are displayed.
(5) Reg-No.

The register Nos. corresponding to the parameter names are displayed.
The register Nos. differ according to the motion No. and axis No. on the current display.
For register Nos., refer to 1.3 Module No. and Motion Parameter Register No.
(6) Set dat

Input (select) parameter values.
(7) Unit

Parameter units are displayed.
(8) Current

The current values of parameters are displayed in the online mode. Nothing is displayed in the offline mode.

1.2.5 Setting SERVOPACK Parameters

Set the parameters necessary for the SERVOPACK.
Configuration of the "Servo Pack" window

(1) Axis No.

Select the axis No. from axis 1 to axis 4. SERVOPACK parameters should be set in axes.
(2) Servo Pack

The type of SERVOPACK is displayed.
(3) No.

SERVOPACK parametei Nos. are displayed.
(4) Name

Parameter names are displayed.
(5) Set dat

Input (select) parameter values.
(6) Unit

Parameter units are displayed.
(7) Current

The current values of parameters are displayed in the online mode.
Nothing is displayed in the offline mode.

Note
When opening the SERVOPACK window, check that the current value of Bit 0 of the motion setting parameter OW $\square \square 20$ "Motion Command Code" is NOP $(=0)$. Opening in other than NOP $(=0)$ condition gives an error message.

1.2.6 Monitoring Running Status (Control Data)

Monitor data is displayed on the "Monitor" window of $\mathrm{CP}-717$. This window can be used for debugging user programs, tuning the motion control, etc.

On this window, only the current values of motion monitoring parameters are displayed, and the data cannot be changed.

Configuration of the "Monitor" window

(1)
(2)

(1an

(4)
(5)
(6)
(7)
(1) Axis No.

Select the axis No. from axis 1 or axis 2. Motion monitoring parameters are displayed in axes.
(2) Servo Pack

The type of SERVOPACK is displayed.
(3) No.

Motion monitoring parameter Nos. are displayed.
(4) Name

Parameter names are displayed.
(5) Reg-No.

The register Nos. corresponding to the parameter names are displayed.
The register Nos. differ according to the motion No. and axis No. on the current display.
For register Nos., refer to 1.3 Module No. and Motion Parameter Register No.
(6) Monitor dat

The current values of parameters are displayed in the online mode. Nothing is displayed in the offline mode.
(7) Unit

Parameter units are displayed.

1.3 Module No. and Motion Parameter Register No.

The motion parameter register No. (I or O register No.) differs according to the module No. and axis No. (1 to 14).
The motion parameter register No. is given by the following equation.
Motion parameter register No. (IW $\square \square \square \square \square$ and $O W \square \square \square \square)=$ Module No. offset + Axis offset
The module No. offset is as shown below according to the module No.

Module NO. $1=$ C000	Module NO. $=$ C400
Module NO. $3=\mathrm{C} 800$	Module NO. $4=$ CC 00
Module NO. $5=$ D000	Module NO. $6=$ D400
Module NO. $7=$ D800	Module NO. $8=$ DC00
Module NO. $9=$ E000	Module NO.10 $=$ E400
Module NO.11 $=$ E800	Module NO.12 $=$ EC00
Module NO.13 $=$ F000	Module NO.14 $=$ F400
Module NO.15 $=$ F800	Module NO.16 $=$ FC00

The axis offset is as shown below according to each axis No.

$$
\text { Axis offset }=(\text { Axis No. }-1) \times 40 \mathrm{H}(64 \text { words })
$$

The contents described above are summarized in Table 1.2.

Table 1.2 Motion Parameter Register No.

	Axis 1	Axis 2	Axis 3	Axis 4	Axis 5	Axis 6	Axis 7	Axis 8	Axis 9	Axis 10	Axis 11	Axis 12	Axis 13	Axis 14
1	$\begin{aligned} & \mathrm{COOO} \\ & \mathrm{C} 03 \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{CO40} \mathrm{\sim} \\ & \mathrm{C} 07 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{COBO} \mathrm{\sim} \\ & \mathrm{COBF} \end{aligned}$	$\begin{aligned} & \mathrm{COCO} \\ & \mathrm{C} 0 \mathrm{FF} \end{aligned}$	$\begin{aligned} & \mathrm{C} 100 \sim \\ & \mathrm{Cl3F} \end{aligned}$	$\begin{aligned} & \mathrm{C} 140 \sim \\ & \mathrm{Cl} 17 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \text { C180~ } \\ & \text { C1BF } \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{ClCO} \\ \mathrm{ClFF} \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{C} 200 \sim \\ & \mathrm{C} 23 \mathrm{~F} \end{aligned}$					
2		$\begin{aligned} & \mathrm{C} 440 \\ & \mathrm{C} 47 \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C480-} \\ & \mathrm{C4BF} \end{aligned}$	$\begin{gathered} \mathrm{C} 4 \mathrm{CO} \\ \mathrm{C} 4 \mathrm{FF} \end{gathered}$	$\begin{aligned} & \text { C500~ } \\ & \text { C53F } \end{aligned}$	$\begin{aligned} & \mathrm{C} 540- \\ & \mathrm{C} 57 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \text { C580~ } \\ & \text { C5BF } \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{C5CO} \\ \mathrm{C} 5 \mathrm{FF} \\ \hline \end{array}$	$\begin{gathered} \mathrm{C} 600 \sim \\ \mathrm{C} 63 \mathrm{~F} \end{gathered}$	$\begin{aligned} & \mathrm{C} 640- \\ & \mathrm{C} 67 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{C} 680 \sim \\ & \mathrm{C} 6 \mathrm{BF} \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{C} 6 \mathrm{C} 0 \\ \mathrm{C} 6 \mathrm{FF} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{C} 700 \mathrm{a} \\ & \mathrm{C} 73 \mathrm{~F} \end{aligned}$	
3														
4														
5	$\begin{aligned} & \text { D000~~ } \\ & \text { D03F } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { D040~ } \\ \text { D07F } \\ \hline \end{array}$	$\begin{aligned} & \text { D080~ } \\ & \text { D0BF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DOCO } \\ & \text { DOFF } \end{aligned}$	$\begin{aligned} & \text { D100~ } \\ & \text { D13F } \end{aligned}$	$\begin{gathered} \text { D140~ } \\ \text { D17F } \end{gathered}$	$\begin{aligned} & \text { D180~ } \\ & \text { D1BF } \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{DICO} \\ \mathrm{D} 1 \mathrm{FF} \\ \hline \end{array}$	$\begin{aligned} & \text { D200~ } \\ & \text { D23F } \\ & \hline \end{aligned}$					
6	$\begin{aligned} & \text { D400~ } \\ & \text { D43F } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { D440~ } \\ \text { D47F } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{D} 480 \sim \\ & \text { D4BF } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { D4C0~ } \\ \text { D4FF } \\ \hline \end{array}$	$\begin{gathered} \hline \text { D500~ } \\ \text { D53F } \end{gathered}$		$\begin{array}{\|c\|} \hline \text { D580~ } \\ \text { D5BF } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{D5CO} \\ \hline \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{D} 600- \\ \mathrm{D} 63 \mathrm{~F} \end{gathered}$	$\begin{gathered} \text { D640- } \\ \text { D67F } \end{gathered}$		$\begin{gathered} \hline \mathrm{D} 6 \mathrm{Ca} \\ \mathrm{D} 6 \mathrm{FF} \\ \hline \end{gathered}$	$\begin{gathered} \text { D700 } \\ \text { D73F } \\ \hline \end{gathered}$	$\begin{aligned} & \text { D740 } \\ & \text { D } 77 \mathrm{~F} \end{aligned}$
7		$\begin{aligned} & \text { D840~ } \\ & \text { D87F } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { D880~ } \\ \text { D8BF } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { D8C0~ } \\ \text { D8FF } \\ \hline \end{array}$	$\begin{aligned} & \text { D900~ } \\ & \text { D93F } \\ & \hline \end{aligned}$			$\begin{array}{\|c\|} \hline \text { D9C0~ } \\ \text { D9FF } \\ \hline \end{array}$	$\begin{gathered} \text { DA00~ } \\ \text { DA3F } \\ \hline \end{gathered}$	$\begin{aligned} & \text { DA40~ } \\ & \text { DA7F } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DABO~ } \\ & \text { DABF } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { DAC0~ } \\ \text { DAFF } \\ \hline \end{array}$	DB00~ DB3F	
8				$\begin{gathered} \mathrm{DCCO} \\ \mathrm{DCFF} \end{gathered}$	$\begin{gathered} \text { DD00 } \\ \text { DD3F } \end{gathered}$		$\begin{aligned} & \text { DD80- } \\ & \text { DDBF } \end{aligned}$	$\begin{array}{\|c} \hline \text { DDCO~ } \\ \text { DDFF } \end{array}$		$\begin{aligned} & \text { DE40- } \\ & \text { DE7F } \end{aligned}$		$\begin{gathered} \hline \text { DEC0 } \\ \text { DEFF } \end{gathered}$	$\begin{aligned} & \text { DF00 } \\ & \text { DF3F } \end{aligned}$	
9												$\begin{aligned} & \text { E2C0- } \\ & \text { E2FF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { E300~ } \\ & \text { E33F } \\ & \hline \end{aligned}$	
10														
11	$\begin{aligned} & \text { E800 } \\ & \text { E83F } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { E840~ } \\ & \text { E87F } \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline \text { E8C0 } \\ \text { E8FF } \\ \hline \end{array}$			$\begin{aligned} & \text { E980~ } \\ & \text { E9BF } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E9CO} \\ & \text { E9FF } \end{aligned}$	$\begin{aligned} & \text { EAOO~ } \\ & \text { EA3F } \end{aligned}$	$\begin{aligned} & \text { EA40 } \\ & \text { EA7F } \end{aligned}$	$\begin{aligned} & \text { EA80 } \\ & \text { EABF } \end{aligned}$	$\begin{aligned} & \text { EACO } \\ & \text { EAFF } \end{aligned}$	$\begin{aligned} & \text { EB00~ } \\ & \text { EB3F } \end{aligned}$	
12	$\begin{aligned} & \text { EC00 } \\ & \text { EC3F } \end{aligned}$	$\begin{aligned} & \text { EC40~ } \\ & \text { EC7F } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { EC80 } \\ & \text { ECBF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ECCO } \\ & \text { ECFF } \end{aligned}$	$\begin{aligned} & \text { EDOO } \\ & \text { ED3F } \end{aligned}$	$\begin{aligned} & \text { ED40 } \\ & \text { ED7F } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ED80~ } \\ & \text { EDBF } \end{aligned}$	$\begin{gathered} \text { EDCO } \\ \text { EDFF } \\ \hline \end{gathered}$	$\begin{aligned} & \text { EE00- } \\ & \text { EE3F } \end{aligned}$	$\begin{aligned} & \mathrm{EE} 40- \\ & \mathrm{EE} 7 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \text { EE80~ } \\ & \text { EEBF } \end{aligned}$	$\begin{aligned} & \text { EECO } \\ & \text { EEFF } \end{aligned}$	$\begin{aligned} & \text { EF00 } \\ & \text { EF3F } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { EF40- } \\ & \text { EF7F } \\ & \hline \end{aligned}$
13	$\begin{aligned} & \text { F000~ } \\ & \text { F03F } \end{aligned}$	$\begin{aligned} & \text { F040~ } \\ & \text { F07F } \end{aligned}$	$\begin{aligned} & \text { F080 } \\ & \text { FOBF } \end{aligned}$	$\begin{gathered} \text { FOC0~ } \\ \text { FOFF } \end{gathered}$	$\begin{aligned} & \text { F100~ } \\ & \text { F13F } \end{aligned}$	$\begin{gathered} \text { F140 } \\ \text { F17F } \end{gathered}$	$\begin{aligned} & \text { F180~ } \\ & \text { F1BF } \end{aligned}$	$\begin{aligned} & \text { F1CO } \\ & \text { F1FF } \end{aligned}$	$\begin{aligned} & \text { F200~ } \\ & \text { F23F } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { F240~ } \\ & \text { F27F } \end{aligned}$	$\begin{aligned} & \text { F280~ } \\ & \text { F2BF } \end{aligned}$	$\begin{aligned} & \mathrm{F} 2 \mathrm{CO} \\ & \mathrm{~F} 2 \mathrm{FF} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { F300~ } \\ & \text { F33F } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { F340~ } \\ & \text { F37F } \end{aligned}$
14			$\begin{aligned} & \text { F480~ } \\ & \text { F4BF } \\ & \hline \end{aligned}$		$\begin{gathered} \text { F500~ } \\ \text { F53F } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{F} 540 \sim \\ & \mathrm{~F} 57 \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { F580~ } \\ & \text { F5BF } \end{aligned}$	$\begin{aligned} & \mathrm{F5CO} \\ & \mathrm{~F} 5 \mathrm{FF} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { F600~ } \\ & \text { F63F } \end{aligned}$	$\begin{aligned} & \text { F640~ } \\ & \text { F67F } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { F680~ } \\ & \text { F6BF } \end{aligned}$	F6FF	$\begin{aligned} & \text { F700~ } \\ & \text { F73F } \\ & \hline \end{aligned}$	
15	$\begin{aligned} & \mathrm{F} 800 \\ & \mathrm{~F} 83 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \text { F840~ } \\ & \text { F87F } \end{aligned}$	$\begin{aligned} & \text { F880~ } \\ & \text { F8BF } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{FBCO} \\ & \mathrm{~F} 8 \mathrm{FF} \\ & \hline \end{aligned}$	$\begin{gathered} \text { F900~ } \\ \text { F93F } \end{gathered}$	$\begin{gathered} \text { F940~ } \\ \text { F97F } \end{gathered}$	$\begin{aligned} & \text { F980~ } \\ & \text { F9BF } \end{aligned}$	$\begin{aligned} & \mathrm{F} 9 \mathrm{CO} \\ & \mathrm{~F} 9 \mathrm{FF} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { FA00~ } \\ & \text { FABF } \end{aligned}$	$\begin{aligned} & \text { FA40- } \\ & \text { FA7F } \end{aligned}$	$\begin{aligned} & \text { FA80 } \\ & \text { FABF } \end{aligned}$	$\begin{aligned} & \text { FAC0 } \\ & \text { FAFF } \end{aligned}$	FB3F	$\begin{aligned} & \text { FB40~ } \\ & \text { F87F } \end{aligned}$
16	$\begin{aligned} & \text { FC00- } \\ & \text { FC3F } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{FC40} \\ & \mathrm{FC} 7 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \text { FC80~ } \\ & \text { FCBF } \end{aligned}$	$\begin{aligned} & \text { FCCO } \\ & \text { FCFF } \end{aligned}$	$\begin{aligned} & \text { FD00 } \\ & \text { FD3F } \end{aligned}$	$\begin{aligned} & \text { FD40 } \\ & \text { FD7F } \end{aligned}$	$\begin{aligned} & \text { FD80~ } \\ & \text { FDBF } \end{aligned}$	$\begin{gathered} \text { FDCO } \\ \mathrm{FDFF} \\ \hline \end{gathered}$	$\begin{aligned} & \text { FE } 00 \sim \\ & \text { FE3F } \end{aligned}$	$\begin{aligned} & \text { FE40 } \\ & \text { FE7F } \end{aligned}$	$\begin{aligned} & \text { FE80 } \\ & \text { FEBF } \end{aligned}$	$\begin{aligned} & \text { FEC0 } \\ & \text { FEFF } \end{aligned}$	$\begin{aligned} & \text { FF00 } \\ & \text { FF3F } \end{aligned}$	$\begin{aligned} & \text { FF40~ } \\ & \text { FF7F } \end{aligned}$

Note
No. of registers with a different module No. are not consecutive.
Those with the same module No. are consecutive between axes No. 1 and 8 and between axes No 9 and 14, but those between axes No. 8 and 9 are not consecutive.
Therefore, care should be taken if a subscript (i, j) is used on a user program.
(Example 1) Axes No. 1 to 8 with the same module No.:
With $\operatorname{HW}(\mathrm{OW}) \mathrm{C} 000 \mathrm{i}$, read can be performed normally within the range of $\mathrm{i}=0$ to 511 .
With IW(OW)C000i, the register range of module No. 1 between axes No. 1 and 8 , that is, the range between IW(OW)C000 and IW(OW)CIFF can be read and written normally.
If i>511, read cannot be performed normally.
(Example 2) Axes No. 9 to 14 with the same module No.:
With $\operatorname{HW}(\mathrm{OW}) \mathrm{C} 200 \mathrm{i}$, read can be performed normally within the range of $\mathrm{i}=0$ to 383 .
With IW(OW)C200, the register range of module No. 1 between axes No. 9 and 14, that is, the range between $\mathrm{IW}(\mathrm{OW}) \mathrm{C} 200$ and $\mathrm{IW}(\mathrm{OW}) \mathrm{C} 37 \mathrm{~F}$ can be read and written normally.
If $i>383$, read cannot be performed normally.
Be aware that with $H \mathrm{IW}(\mathrm{OW}) \mathrm{C} 200 \mathrm{i}$, register Nos. between axes No. 1 and 8 and from module No. 2 onward cannot be read.

1.4 Outlines of functions

1.4.1 Outlines of motion commands

The motion commands include positioning (POSING), zero point return (ZRET), interpolation (INTERPOLATE), constant speed feed (FEED) and constant step feed (STEP), which can be independently selected on each axis.

Table 1.3 List of motion command functions

Function	Outline
Positioning (POSING)	Positioning is performed at the designated acceleration time constant and at the designated rapid feed speed.
External positioning (EX_POSING)	If a LATCH signal (external positioning signal) is input during positioning operation, the current position counter is latched according to the latch signal, and positioning is performed by moving at an external positioning travel distance from that position.
Zero point return (ZRET)	Positioning is performed by moving at a zero point return travel distance from the ZERO signal.
Interpolation (INTERPOLATE)	Feed is performed by interpolation according to the position data for every high-speed scan issued from the CPU module.
Interpolation with position detection (LATCH)	While feed is performed by interpolation in the same way as the above interpolation (INTERPOLATE), the current position counter is latched according to the LATCH signal, and the latch position converted in the reference unit system is reported.
Constant speed feed (FEED)	Rapid feed is performed in the designated direction at the designated acceleration time constant and at the designated feed speed toward an infinite distance. Using the NOP command decelerates the feed to stop.
Constant step feed (STEP)	Positioning is performed by the designated distance of movement (amount of step movement) in the designated direction at the rapid feed speed according to the designated acceleration time constant.
Zero point setting (ZSET)	The position at a designated distance from the current position can be set as the zero point.
Changing the acceleration time constant (ACC)	Validates the setting value of the linear acceleration time constant. Changing the filter time constant (SCC)Validates the setting value of the movement averaging filter or exponential acceleration/deceleration filter time constant.
Changing the filter type (CHG_FILTER)	Validates the setting value of the filter selection. Changing the speed loop gain (KVS) Changing the position loop gain (KPS) Changing the feed forward compensation (KFS)
Validates the setting value of the speed loop gain. Reading the setting value of the position loop gain. servo (CN_RD) the setting value of the feed forward compensation.	

Table 1.3 List of motion command functions (Cont'd)

Function	Outline
Writing the user constants of the MECHATROLINK servo (CN WR)	The user constants of the MECHATROLINK servo are written.
Monitoring the alarm currently arising in the MECHATROLINK servo (ALM MON)	The alarm currently arising in the MECHATROLINK servo is monitored.
Monitoring the alarm history of the MECHATROLINK servo (ALMHIST MON)	The alarm history of the MECHATROLINK servo is monitored.
Clearing the alarm history of the MECHATROLINK servo (ALMHIST CLR)	The alarm history of the MECHATROLINK servo is cleared.

1.5 Hot Swapping

The SVB module is intended to allow hot swapping (removal/insertion under power).
It is necessary to suspend the data updating operation between the CPU module and the module to be replaced because the CPU module is always updating data between mounted modules. Hot swapping is not available when the Servo is ON (the motion setting parameter, "OB••010" is ON). To assure safety, turn OFF the power before replacing a module.

The method of hot swapping (SVB module)

Module before replacement

(1) Turn the BUS switch of the module to HALT.
(2) Confirm that the RMV LED on the front of the module is lit.
(3) Loosen the two screws at the upper right and lower left of the module to remove the module.
(4) Insert the other module with the BUS switch of the module being turned to HALT.
(5) Confirm that if the RMV LED on the front of the module is lit.
(6) Tighten the two screws at the upper right and lower left of the module.
(7) Tum the BUS switch of the module to ACT.
(8) Confirm that if the RMV LED on the front of the module is unlit.
(9) Confirm that if the STATUS LED on the front of the module displays the No. of the module.

Note
For hot swapping, make sure to turn the BUS switch of the module to be replaced to HALT and confirm that the RMV LED is lit and then remove the module from the mother board.
When the RMV LED is unlit, the CPU module is updating data between each module. For this reason, removing the module when the RMV LED is unlit may result in an error with the data updating of another module, causing a system operation error.

1.6 Precautions on Usage

Pay attention to the following points when using the SVB module.
(1) The minimum value of the high-speed scan setting time for the SVB module is as mentione below.
Set the time so as to exceed the minimum value.
(1) When the axis selection (Bit 5 of fixed parameter No. 17 "Motion Controller Functic Selection Flags") is set to finite-length axis "0":
The minimum value of the high-speed scan setting time $=500 \mu \mathrm{~s}+(220 \mu \mathrm{~s} \times$ number axes in use)

Common to the finite-length axis, infinite-length axis and through command mode
(2) When the axis selection (Bit 5 of fixed parameter No. 17 "Motion Controller Functic Selection Flags ") is set to infinite-length axis " 1 ":
The minimum value of the high-speed scan setting time $=500 \mu \mathrm{~s}+(350 \mu \mathrm{~s} \times$ number axes in use)
(3) When the servo driver through command mode selection (Bit 12 of fixed parameter No.l "Motion Controller Function Selection Flags") is set to through command mode " 1 ": '
The minimum value of the high-speed scan setting time $=500 \mu \mathrm{~s}+(80 \mu \mathrm{~s} \times$ number axes in use)
(Example)
When 8 axes are set to finite-length axis, 4 axes to infinite-length axis and 2 axes to through command mode:
The minimum value of the high-speed scan setting time

$$
\begin{aligned}
& =500 \mu \mathrm{~s}+(220 \mu \mathrm{~s} \times 8)+(350 \mu \mathrm{~s} \times 4)+(80 \mu \mathrm{~s} \times 2) \\
& =3820 \mu \mathrm{~s}+(\rightarrow 3.9 \mathrm{~ms})
\end{aligned}
$$

(2) Do not change the high-speed scan setting value, MECHATROLINK assignment ar communication parameters of CPU module during movement (while motion commands suc as positioning and zero point return are being issued).
(3) Once the CPU module configuration definition has been changed, make sure to first turn OF and then turn ON the power.
(4) Once the MECHATROLINK assignment or communication parameters has been change make sure to first turn OFF and then turn ON the power.

2 BASIC SPECIFICATIONS

This chapter describes the basic specifications of the SVB module.

2 BASIC SPECIFICATIONS

The SVB module can be connected with servos and I/Os by means of MECHATROLINK and wit inverters (VS-616G5, VS-676H5) by means of CP-216 transmission, whereby one module can control units in total.

In connection with a MECHATROLINK compatible SERVOPACK, the SVB module has motion function such as positioning, zero point return, interpolation, constant speed feed and constant step feed, which ca be independently selected on each axis. (There is no limitation according to axis No.)
Up to 16 SVB modules can be mounted to one CP-9200SH (module No. $=1$ to 16). Be aware that if oth motion modules (SVA, PO-01 module) are used, they are included in the 16 modules.

The basic specifications of the SVB module are shown in Table 2.1.

Table 2.1 Basic Specifications of the SVB Module

Item		Specification
Field bus		MECHATROLINK (high-speed field network) Can be connected with up to 14 stations of servos, I/Os and inverters.
Slot width		One slot width
Number of control axes		1 to 14 axes/module
	Control specifications	Position controls: positioning, external positioning, zero point return, interpolation, constant speed feed, constant step feed
	Reference units	mm , deg, inch, pulse
	Minimum reference setting units	$1,0.1,0.01,0.001,0.0001,0.00001$
	Maximum reference value	-2147483648 to +2147483647 (32-bit signed)
	Speed reference units	$\mathrm{mm} / \mathrm{min}$, inch/min, deg/min, pulse/min
	Acceleration/deceleration type	Linear, asymmetric, S-curve (Asymmetric acceleration/deceleration is not available for positioning.)
	Override function	0.01 to 327.67% in axes
	Zero point return	4 types: DEC + Phase-C Pulse, ZERO signal, DEC + ZERO signal, Phase-C Pulse Zero point setting function is available.
	Applicable SERVOPACK	SGD- $\square \square \mathrm{AN} / \mathrm{SGDB}-\square \square \square \mathrm{N}$
	Encoder	Incremental/Absolute

FUNCTIONAL DESCRIPTIONS 3 AND EXAMPLES OF USER PROGRAMS

This chapter describes the main functions and operating methods of the module.
Furthermore, simplified examples of user programs are described. Refer to the examples to prepare your own user programs.

3:1 Setting Basic Motion Parameters

Motion parameters which are important for using motion functions are explained below. Be sure to rea through this section before operating this module.

(1) Reference units

The reference units to be input to this module depend on the settings of the following motio fixed parameters.
References are in pulses; mm, deg and inches. The reference units are designated by Bit 0 to 3 c motion' fixed parameter No. 17 "Motion Controller Function Selection Flags." Also, th "minimum reference unit" which can be referenced to this module is set by the above unit settin and motion fixed parameter No. 18 "Number of Digits Below Decimal Point."

Table 3.1 Minimum Reference Unit (One Command Unit)

Number ofdigits belowdecimal point	Bit 0 to 3 of motion fixed parameter No. 17 "Motion Controller Function Selection Flags"			
	Pulse ($=0$)	$\mathrm{mm}(=1)$	$\operatorname{deg}(=2)$	inch ($=3$)
0	1 pulse	1 mm	1 deg	1 inch
1	1 puise	0.1 mm	0.1 deg	0.1 inch
2	1 pulse	0.01 mm	0.01 deg	0.01 inch
3	1 pulse	0.001 mm	0.001 deg	0.001 inch
4	1 pulse	0.0001 mm	0.0001 deg	0.0001 inch
5	1 pulse	0.00001 mm	0.00001 deg	0.00001 inch

(Note) Set the number of digits below decimal point by motion fixed parameter No. 18 "Number of Digi Below Decimal Point."

(2) Electronic gear

In contrast to the reference units to be input to this module, the mechanical movement units a called "output units." .
The electronic gear is a function of converting a position or speed unit from the reference us (mm , deg, inch) to output unit (mm , deg, inch).
In the case where a machine has such a structure that the load side shaft revolves by n when t motor side shaft rotates by m , the "reference unit" can be made equal to the "output unit" by usi the electronic gear function.
Set the electronic gear function by the motion fixed parameters shown in Table 3.2. When the u selection is set to pulse, the electronic gear function is invalid.

Table 3.2 Electronic Gear Parameters

Motion fixed parameter	Name and meaning
Bit 4 of No. 17 "Motion Controller Function Selection Flags" :	Electronic gear selection (0: invalid / 1: valid) *This is invalid when the unit selection is set to pulse. Set it to 0 (= invalid).
No. 19 "Travel Distance per Machine Rotation	Amount of movement per machine rotation *The setting of this parameter is invalid when the electronic gear selection is set to 0 (= invalid).
No. 21 "Servomotor Gear Ratio"	Gear ratio on the motor side. *The setting of this parameter is invalid when the electronic gear selection is set to 0 (= invalid)
No. 22 "Machine Gear Ratio".	Gear ratio on the machine side. *The setting of this parameter is invalid when the electronic gear selection is set to 0 (= invalid)

The meanings and examples of settings of the above parameters are shown below.

Table 3.3 Electronic Gear Parameters/Constants

Table 3.3 Electronic Gear Parameters/Constants (Cont'd)

Motion fixed parameter No.	Name	Description	$\begin{aligned} & \text { Initial } \\ & \text { value } \end{aligned}$
No. 21	Servomotor Gear Ratio	- These parameters are used for setting the gear ratio between the motor and load. The following two values are set for a configuration in which the load shaft will turn n times in response to m turns of the motor shaft.	1
No. 22	Machine Gear Ratio	No. $21=\mathrm{m}$ No. $22=\mathrm{n}$ - Setting range: 1 to 65535 [rotations] Setting example In this case, the reduction gear ratio $=\frac{n}{m}=\frac{3}{7} \times \frac{4}{9}=\frac{4}{21}$ Therefore, set as follows: No. $21=21$ No. $22=4$	1

An example of electronic gear parameter settings (A) \cdots ball screw

In order to make "reference unit" $=$ "output unit" $=0.001 \mathrm{~mm}$ in the above mechanical system, set each paramet as follows:
\cdot No. $19=\frac{6 \mathrm{~mm}}{0.001 \mathrm{~mm}}=6000$
\cdot Reduction ratio $=\frac{\mathrm{n}}{\mathrm{m}}=\frac{5}{7}$

- No. $21=7$
- No. $22=5$

An example of electronic gear parameter settings (B) \cdots rotary load

In order to make "input unit" $=$ "output unit" $=0.1^{\circ}$ in the above mechanical system, set each parameter as follows:

- No. $19=$
$\frac{360^{\circ}}{0.1^{\circ}}=3600$
- Reduction ratio $=\frac{\mathrm{n}}{\mathrm{m}}=\frac{10}{30}=\frac{1}{3}$
- No. $21=3$
- No. $22=1$

(3) Axis selection

There are two types of position controls: finite-length position control within a specified range such as a reciprocating motion, and infinite-length position control for rotating only in one direction. Furthermore, there are two types of infinite-length position controls: resetting to 0 with one rotation such as a belt conveyor, and rotating only in one direction without resetting even after one rotation. For axis selection, choose which position control to use. Set the axis selection by Bit 5 of motion fixed parameter No. 17 "Motion Controller Function Selection Flags."

Table 3.4 Setting of Axis Selection

Type of position control	Setting of axis selection
Finite-length position control	Finite-length axis $(=0)$
Infinite-length position control for rotating only in one direction without resetting even after one rotation	Finite-length axis $(=0)$
Infinite-length position control by resetting with one rotation (Set the reset position by motion fixed parameter No. 23 "Infinite-length axis reset position.")	Infinite-length axis (=1)

(4) Position references

There are two types of position reference settings: direct designation, setting a position reference direct to OL $\square \square 12$, and indirect designation, setting the No. of the position buffer storing a position reference to OL $\square \square 12$. Furthermore, there are two types of direct designations: absolute position designation, setting an absolute position to OL $\square \square 12$, and incremental designation, setting the sum of the previous position reference value (previous value of OL $\square \square \square 12$) and the current amount of movement to OL $\square \square 12$.

In the case of indirect designation, setting the position buffer No., the position stored in the position buffer is regarded as an absolute position.

Parameters related to position references are shown in Table 3.5.

Table 3.5 Position Reference Parameters

Types of Parameter	Parameter No. (Register No.)	Name	Description	Initial Value
Motion Setting Parameter	Bit 12 of OWप[D01	Position Reference Value Selection	Set the method of designating the position reference. 0 : direct designation Set the position data direct to OL $\square \square 12$. Designate whether the position data is absolute or incremental by Bit 14 of OW $\square \square 01$. 1 : indirect designation Set the position buffer No. to OL $\square \square 12$. An absolute position must have been stored in the designated position buffer in advance.	0
	Bit 14 of OW $\square \square 01$	Position Reference Type	Designate the type of position data. 0 : absolute Set an absolute position to OL $\square \square 12$. 1: incremental Set the sum of the previous value of $\mathrm{OL} \square \square 12$ and the current amount of movement to $\mathrm{OL} \square \square 12$. (Note) This is invalid when the Position Reference Value Selection (Bit 12 of OW $\square \square 01$) is set to indirect designation (position buffer).	0
	$\text { OLD } \square 12$	Position Reference Setting	Set the position data. (Note) Setting data differs according to the settings of the Position Reference Value Selection (Bit 12 of OW $\square \square 01$) and Position Reference Type (Bit 14 of OW $\square \square 01$).	0

Table 3.6 Position Reference Selection

Position Reference Value Selection (Bit 12 of OW $\square \square 01$)	Position Reference Type (Bit 14 of OW $\square \square 01$)	Position Reference Setting (OU几 $\square 12$)
;	0 (Absolute position method)	Set an absolute position. (Example) OLD $\square 12-10000$ OLD $\square 124-20000$
0 (Direct designation)	(Increment addition method)	Set the sum of the previous value of $\mathrm{OL} \square \square 12$ and the current amount of movement (incremental amount). $\mathrm{OL} \square \square 12 \leftarrow$ previous $\mathrm{OL} \square \square 12+$ incremental amount of movement (Example) When the previous OL $\square \square 12=1000$ and current amount of movement $=500$, $\mathrm{OL} \square \square 12-10000+500=1500$
1 (Indirect designation)	0	Set the position buffer No. An absolute position must have been stored in the designated position buffer in advance.

In the case of infinite-length axis, set a new position reference ($\mathrm{OL} \square \square \square 12$) by adding the current amount c movement (incremental amount) to the previous position reference (OL $\square \square 12$).
Position Reference ($\mathrm{OL} \square \square 12$) should not be set within the range from 0 to (infinite-length axis res position-1).

What is the position buffer?

A group of position data for each axis can be stored in the buffer (position buffer) in the SVB module. B designating the "buffer No." as position data ($\mathrm{OL} \square \square 12$), the same operation as by referring an absolu position on a program can be performed. The position buffer has a capacity of 256 points $\times 14$ axes.

Note
The data in the position buffer is erased by turning OFF the power or resetting the master of the CPU module. Therefore, make sure to set the buffer at turning ON the power or before using the position buffer.

Writing the position buffer data

Prepare the position buffer in advance using the motion parameters shown in Table 3.7
Table 3.7 Parameters for Preparing the Position Buffer

Name	Register No.	Setting Range	Description
Position Buffer Access No.	OLD][38	1 to 256	Setting of position buffer No.
Position Buffer Write Data	OLD口3A	-2^{31} to $2^{31}-1$	Setting of data to be written to the position buffer
Motion Command Control Flags (MCMDCTRL)	OB $\square \square 21 \mathrm{E}$ (Bit 14 of OW $\square \square 21$)	0 or 1	Writing position buffer data 0 : No processing 1: Write

- Reading position buffer data

By using the motion parameters in Table 3.8, data in the position buffer can be read to motion monitoring parameters. This is used for checking data, etc. Note that it takes two scans (H scans) from issuing the read command to setting the motion monitoring parameter (IL $\square \square 28$) data.

Table 3.8Parameters for Reading the Position Buffer Data

Name	Register No.	Setting Range	Description
Position Buffer Access No.	OLD[]38	1 to 256	Setting of position buffer No.
Motion Command Control Flags (MCMDCTRL)	OB[][721F (Bit 15 of OWD $\square 21$)	0 or 1	Reading position buffer data 0 : No processing 1: Read
Position Buffer Read Data	ILD \square^{28}	-2^{31} to $2^{31}-1$	Data read from the position

Using the position buffer data as position commands
By using the motion parameters in Table 3.9, data in the position buffer can be used as position reference values.

Table 3.9 Motion Parameters

Name	Register No.	Setting Range	Description
Position Reference Setting (XREF)	OL $\square \square 12$	1 to 256	Set the position buffer No. instead of the position reference value.
RUN Command Settings (SVRUNCMD)	OB $\square \square 01 \mathrm{C}$	0 or 1	Select to use the position buffer $0:$ Data of XREF(OLD $\square 12)$ is the position reference value
(Bit 12 of $\square \square 01$)		Data of XREF(OL $\square \square 12)$ is the position buffer No.	

(5) Position monitoring

Position monitoring parameters are shown in Table 3.10.

Table 3.10 Motion Parameters

Motion Monitoring Parameter No. (register No.)	Name	Description
IL $\square \square 02$	Calculated Position in Machine Coordinate System (CPOS)	A calculated position in the machine coordinate system which is controlled by this module is reported. Normally, the position data reported to this parameter is the targe position for every scan. (Note) If Axis Selection is set to infinite-length axis, the range from 0 to (infinite-length axis reset position - 1) is reported. In the case of infinite-length axis, set a new Position Reference ($\mathrm{OL} \square \square 12$) by adding the current amount of movement (incremental amount) to the previous position reference ($\mathrm{OL} \square \square 12$). Note that the Position Reference (OLD$\square \square 12$) should not be set within the range from 0 to (infinite-length axis reset position - 1).
IL $\square \square 08$	Machine Coordinate System Feedback Position (APOS)	A feedback position in the machine coordinate system is reported (Note) If Axis Selection is set to infinite-length axis, the range from 0 to (infinite-length axis reset position - 1) is reported.
ILワ口18.	Machine Coordinate System Reference Position	The position output to the outside by this module, a reference position on the machine coordinate system, is reported. This data is not updated in the machine lock condition. (No output is made to the outside in the machine lock condition.) When the machine lock function is not used, the position is the same as that of IL $\square \square 02$.
ILQ \square 2E	Calculated Reference Coordinate System Position	This parameter works when the axis selection is set to infinitelength axis. When set to infinite-length axis, the target position for every scat corresponding to the position reference is reported to this parameter. (Note) When set to finite-length axis, the position is the same as that of IL $\square \square 02$.

- What is the machine coordinate system?

This is a basic coordinate system which is set by executing the zero point return mode: the motic command "Zero Point Return (ZRET)" or the motion command "Zero Point Setting (ZSET)".
This module controls positions by using this machine coordinate system.

(6) Speed references

There are two types of setting of speed references such as rapid feed speed: setting in reference unit, and setting in percentage (\%) relative to the rated rotation speed. Speed reference parameters are shown in Table 3.11 .

Table 3.11 Motion Parameters

Type of parameter	Parameter No. (Register No.)	Name	Description
Motion Fixed Parameter	No. 5	Pulse Counting Mode Selection	Set the pulse counting method and the number of multiplication. 4: A/B method (multiplied by 1) 5: A/B method (multiplied by 2) 6: A/B method (multiplied by 4)
	No. 7	Rated Motor Speed Setting	Set the number of rotations for the motor running at the rating (100% speed).
	No. 8	Number of Feedback Pulses per Rotation	Set the number of pulses (value before multiplication) per motor rotation.
Motion Setting Parameter	Bit 13 of OW $\square \square \square 01$	Speed Reference Value Selection	Designate the feed speed setting unit and the feed speed register No. 0 : OL $\square \square 22$ (unit: 10^{n} reference unit $/ \mathrm{min}$) is used as the feed speed. 1: OW $\square \square 15$ (unit: $\%(1=0.001 \%)$ relative to the rated rotation speed) is used as the feed speed.
	OW $\square \square 15$	Speed Reference Setting	This is valid when the Speed Reference Value Selection (Bit 13 of $\mathrm{OW} \square \square 01$) is set to " 1. ." Set the feed speed in percentage ($1=0.001 \%$) relative to the rated rotation speed. (Note) This is invalid when the Speed Reference Value Selection is set to " 0 ."
	OL[][]22	Rapid Feed Speed	This is valid when the Speed Reference Value Selection (Bit 13 of OW $\square \square 01$) is set to " 0 ." Set the feed speed in reference unit. $1=10^{n}$ reference unit $/ \mathrm{min}$ (n : number of decimal places) The speed differs according to the unit selection as follows: In pulses: $1=1000$ pulses $/ \mathrm{min}$ In $\mathrm{mm}: 1=1 \mathrm{~mm} / \mathrm{min}$ In deg : $1=1 \mathrm{deg} / \mathrm{min}$ In inches: $1=1 \mathrm{inch} / \mathrm{min}$
	OW[][]2C	Override	The feed speed setting value can be changed for use. (Note) "Override" means changing and using the setting value of feed speed. Whether the override is valid or invalid is set by Bit 9 "Override Selection" of motion fixed parameter No. 17 "Motion Controller Function Selection Flags." If it is set to invalid, the speed is 100% of the feed speed setting value.

Examples of parameter settings are shown in Table 3.12.
Table 3.12 Examples of Parameter Settings

3.2 Positioning (POSING)

Positioning is performed at the referenced position with the designated acceleration time constant and at the designated rapid feed speed. The rapid feed speed and position reference value can be changed even during operation. If the changed position reference value cannot secure a deceleration distance or is in the reverse direction, the operation is decelerated to stop, and then positioning is performed again at the position reference value.

Positioning on each axis is performed as follows.
The register Nos, are intended for the first axis of module No. 1. If the module No. and/or axis No. is different, reread the register Nos., referring to 1.3 "Mọdule No. and Motion Parameter Register No." Motion parameters to be used for positioning are marked with " \bigcirc " in the "Positioning" column under "Motion Command Code" in 5.1.2 "List of Motion Setting Parameters" and 5.1.3 "List of Motion Monitoring Parameters."
(1) Set the motion fixed parameters and the initial values of the motion setting parameters that suit your machine.
(Note) Make sure to set Bit 7 (Motion Command Use Selection) of motion parameter No. 14 "Additional Function Use Selection" to 1 (= use).
Also, make sure to set Bit 8 (Motion Command Code Validity Selection) of the motion setting parameter "RUN Mode Settings (OW $\square \square 00$)" to 1 (= valid).
(2) Select the Position Control Mode (PCON) (Bit 2 of OWC000).
(3) Set the Position Reference Setting (OLC012) and Rapid Feed Speed (OLC022 or OWC015). Set motion setting parameters to be used for Positioning (POSING) such as the Linear Acceleration Time Constant (OWC00C) and the Filter Time Constant (OWC014), if necessary.
(4) Turn the Servo ON (RUN) (Bit 0 of OWC001).
(5) Set Positioning (POSING) to the Motion Command Code (OWC020).
(6) By setting Positioning (POSING) to the Motion Command Code, positioning is performed on the axis in accordance with the designated motion parameters.
The feed speed and position reference value can be changed even during positioning operation. To hold positioning, turn ON HOLD (Bit 1 of OWC021).
Upon completion of holding, HOLDL (Bit 1 of IWC015) is turned ON.
To cancel holding, turn OFF HOLD (Bit 0 of OWC021).
To abort positioning, turn ON ABORT (Bit 1 of OWC021) or set NOP $(=0)$ to the Motion Command Code.
During abort, BUSY (Bit 0 of IWC015) is turned ON, and upon completion of abort, it is turned OFF.
(Note) If abort is canceled (ABORT is turned OFF) at the time of completion of abort:

- With the Position Reference Type (Bit 14 of OWC001) absolute ($=0$), positioning is restarted toward the Position Reference (OLC012).
With the Position Reference Type (Bit 14 of OWC001) incremental (= 1), positioning is kept stopped until a new Position Reference (OLC012) is set.
(7) When the Positioning completion range (OWC00E) is reached after issuing is completed (Bit 2 of IWC015 is turned ON), the Positioning completion signal POSCOMP (Bit D of IWC000) is turned ON .

The operation in \square should be performed by the user.
The operation in \square should be executed by the system.

- An example of user programs (point-to-point positioning)

Fig. 3.1 An Example of Positioning Patterns
<Preconditions>
The motion fixed parameters and the initial values of the motion setting parameters are the same as in 5.3 "Examples of Motion Parameter Settings."
<Operating conditions>
In the pattern shown in Fig. 3.1, the operation stops at an absolute position of 10000 pulses.
Position reference: OLC012 $=10000$ pulses
In this example, the first axis of module No. 1 is used.
If the module No. and/or axis No. is different, reread the register Nos., referring to 1.3 "Module No. and Motion Parameter Register No."
For details of the registers (OW $\square \square \square \square$) in use, refer to Chapter 5 "Motion Parameters."

Fig. 3.2 An Example of Positioning Programs (DWG H03)
The example in Fig. 3.2 is simplified, but each register can be freely controlled by user programs.

3.3 External Positioning (EX_POSING)

In the same way as Positioning (POSING), positioning is performed at the referenced position with the designated acceleration time constant and at the designated rapid feed speed. If a LATCH signal (externa positioning signal) is input during operation at the feed speed, the current position is latched according to the LATCH signal, and positioning is performed by moving from that position at the external positioning travel distance set by the corresponding parameter. The rapid feed speed and position reference value can be changed even during operation.

If a deceleration distance cannot be secured within the set external positioning travel distance, the operatior is decelerated to stop, and then positioning is performed again at the target position.

Until just before the LATCH signal (external positioning signal) is input, the external positioning trave distance can be changed. As a LATCH signal (external positioning signal), a special discrete input (EXM signal) is used.

External positioning on each axis is performed as follows.
The register Nos. are intended for the first axis of module No. 1. If the module No. and/or axis No. is different, reread the register Nos., referring to 1.3 "Module No. and Motion Parameter Register No.' Motion parameters to be used for external positioning are marked with " \bigcirc " in the "External Positioning' column under "Motion Command Code" in 5.1.2 "List of Motion Setting Parameters" and 5.1.3 "List o Motion Monitoring Parameters."
(1) Set the motion fixed parameters and the initial values of the motion setting parameters that sui your machine.
(Note) Make sure to set Bit 7 (Motion Command Use Selection) of motion parameter No. 14 "Additiona Function Use Selection" to 1 ($=$ use).
Also, make sure to set Bit 8 (Motion Command Code Validity Selection) of the motion settin parameter "RUN Mode Setting (OW $\square \square 00$)" to 1 (= valid).
(2) Select the Position Control Mode (PCON) (Bit 2 of OWC000).
(3) Set the Position Reference Setting (OLC012), Rapid Feed Speed (OLC022 or OWC015) and External Positioning Travel Distance (OLC024).
Set motion setting parameters to be used for External Positioning (EX_POSING) such as the Linear Acceleration Time Constant (OWC00C) and the Filter Time Constant (OWC014), i necessary.
(4) Turn the Servo ON (RUN) (Bit 0 of OWC001).
(5) Set External Positioning (EX_POSNG) to the Motion Command Code (OWC020).
(6) By setting External Positioning (EX_POSING) to the Motion Command Code, positioning performed on the axis in accordance with the designated motion parameters. The rapid fee speed and position reference value can be changed even during positioning operation.
To hold external positioning, turn ON HOLD (Bit 1 of OWC021). Upon completion o holding, HOLDL (Bit 1 of IWC015) is turned ON. To cancel holding, turn OFF HOLD (Bit of OWC021).
To abort positioning, turn ON ABORT (Bit 1 of OWC021) or set NOP $(=0)$ to the Motion Command Code.
During abort, BUSY (Bit 0 of IWC015) is turned ON, and upon completion of abort, it 1 turned OFF.
(Note) Even if abort is canceled (ABORT is turned OFF) at the time of completion of abort, positioning i kept stopped regardless of whether the Position Reference Type (Bit 14 of OWC001) is absolute (= 0 or incremental ($=1$).
(7) When the Positioning completion range (OWCOOE) is reached after issuing is completed (Bi 2 of IWC015 is turned ON), the Positioning completion signal POSCOMP (Bit D of IWC000 is turned ON .
(8) When positioning is completed, cancel the motion command "External Positioning."
(Note) Since the rise of exteral positioning is detected, once you have executed external positioning, yo must set NOP to the motion command and set External Positioning again to the motion command.

The operation in \square should be executed by the system.
The operation in should be performed by the user.

- An example of user programs (external positioning)

Fig. 3.3 An Example of External Positioning Patterns
<Preconditions>
The motion fixed parameters and the initial values of the motion setting parameters are the sam as in 5.3 "Examples of Motion Parameter Settings."
<Operating conditions>
In the pattern shown in Fig. 3.3, the operation stops at an external positioning travel distance o 10000 pulses.

External positioning travel distance: OLC024 $=10000$ pulses
In this example, the first axis of module No. 1 is used.
If the module No. and/or axis No. is different, reread the register Nos., referring to 1.3 "Modul No. and Motion Parameter Register No."
For the details of the registers (OW $\square \square \square \square \square$) in use, refer to Chapter 5 "Motion Parameters."

Fig. 3.4 An Example of Positioning Programs (DWG HO3)
The example in Fig. 3.4 is simplified, but each register can be freely controlled by user programs

3.4 Zero Point Return (ZRET)

"Zero Point Return" is an operation to return to the zero point in the machine coordinate system. Since the position data of the zero point in the machine coordinate system is erased when the power is cut off, the zero point must be newly decided in the machine coordinate system after power is turned ON. The types of zero point return operations are shown in the table below.

Table 3.13 Types of zero point return (ZRN) operation

Name	Method
DEC + Phase-C Pulse	Three-stage deceleration method by deceleration LS and Phase-C pulse
ZERO Signal	Zero point return method by ZERO signal
DEC + ZERO Signal	Three-stage deceleration method by deceleration LS and ZERO signal
Phase-C Pulse	Zero point return method by Phase-C pulse

3.4.1 DEC + Phase-C Pulse

This method has three speed levels.

Fig. 3.5 DEC + Phase-C Pulse
(1) Movement is started in the direction designated by the parameter "Zero Point Return Direction." At this time, the speed corresponds to the value designated by the parameter "Rapid Feed Speed."

- Setting parameter OW $\square 00$ "RUN Mode Setting b9: Zero Point Return Direction "
- Setting parameter OW $\square \square \square 22$ "Rapid Feed Speed"
(2) When the DEC set for deceleration turns ON the deceleration LS, the feed speed is decelerated to the value of the parameter "Approach Speed."
- SERVOPACK user constant Cn-0022 "Zero Point Approach Speed 1"
(3) After the DEC is detached from the deceleration LS, the speed is changed to the value of the parameter "Creep Speed" at the first Phase-C position.
- SERVOPACK user constant Cn-0023 " Zero Point Approach Speed 2"
(4) The position that is moved from where the Phase-C pulse was detected at the creep speed by the parameter "Zero Point Return Travel Distance" is taken as the zero point in the machine coordinate system.
- SERVOPACK user constant Cn-0028 "Zero Point Return Final Travel Distance"

3.4.2 ZERO Signal

In place of the Phase-C pulse of the Phase-C pulse method, this method uses the ZERO signal to return to the zero point.

This method uses just the ZERO signal to return to the zero point in machines that are not equipped with deceleration LS and other capabilities.

Fig. 3.6 ZERO Signal
(1) Movement is started in the direction designated by the parameter "Zero Point Retur Direction." 'At this time, the speed corresponds to the value designated by the paramete "Rapid Feed Speed."

- Setting parameter OW $\square \square 00$ "RUN Mode Setting b9: Zero Point Return Direction"
- Setting parameter OL $\square 22$ "Rapid Feed Speed"
(2) The position that is moved from where the zero point LS was turned on by the distance set b the parameter "Final Travel Distance" is taken as the zero point on the machine coordinat system.
- SERVOPACK user constant Cn-0028 "Zero Point Return Final Travel Distance"

3.4.3 DEC + ZERO signal

In place of the Phase-C pulse of the DEC + Phase-C pulse method, this method uses the ZERO signal t return to the zero point.

Fig. 3.7 DEC + ZERO Signal

3.4.4 Phase-C Pulse

This method uses just the Phase-C pulse of the Servomotor to return to the zero point in machines that a not equipped with deceleration LS and other capabilities.

Fig. 3.8 Phase-C Pulse

3.4.5 An Example of Zero Point Return Methods

Zero point return on each axis is performed as follows. DEC + Phase-C Pulse is taken for example. The register Nos. are intended for the first axis of module No. 1. If the module No. and/or axis No. is different, reread the register Nos., referring to 1.3 "Module No. and Motion Parameter Register No." Motion parameters to be used for zero point return are marked with " \bigcirc " in the "Zero Point Return" column under "Motion Command Code" in 5.1.2 "List of Motion Setting Parameters" and 5.1.3 "List of Motion Monitoring Parameters."
(1) Set the motion fixed parameters and the initial values of the motion setting parameters that suit your machine.
(Note) Make sure to set Bit 7 (Motion Command Use Selection) of motion fixed parameter No. 14 "Additional Function Use Selection" to 1 ($=$ use).
Make sure to set Bit 8 (Motion Command Code Validity Selection) of the motion setting parameter "RUN Mode Setting (OW $\square \square 00$)" to 1 (= valid).
Also, select DEC + Phase-C Pulse for Zero Point Retum Method (No. 31 of fixed parameter).
(2) Select the Position Control Mode (PCON) (Bit 2 of OWC000).
(3) Set the Rapid Feed Speed (OLC022 or OWC015).

Set motion parameters to be used for Zero Point Return (ZRET) such as the Linear Acceleration Time Constant (OWC00C) and the Zero Point Return Final Travel Distance (OLC02A).
(4) Turn the Servo ON (RUN) (Bit 0 of OWC001).
(5) Set Zero Point Return (ZRET $=3$) to the Motion Command Code (OWC020).
(6) By setting Zero Point Return (ZRET) to the Motion Command Code, movement is made on the axis in the direction designated by the parameter "Zero Point Return Direction." The set values of the motion parameters cannot be changed during zero point return operation. Also, zero point return cannot be held.
To abort positioning, turn ON ABORT (Bit 1 of OWC021) or set NOP ($=0$) to the Motion Command Code.
During abort, BUSY (Bit 0 of IWCO15) is turned ON, and upon completion of abort, it is turned OFF.
(Note) Even if abort is canceled (ABORT is turned OFF) at the time of completion of abort, positioning is kept stopped.
(7) The speed is decelerated to the approach speed (SERVOPACK user constant Cn-0022 "Zero Point Approach Speed 1") on the falling edge of the dog (deceleration LS) signal.
(8) After the dog (deceleration LS) signal is detached from the decceleration LS, the speed is decelerated to the creep speed (SERVOPACK user constant Cn-0023 "Zero Point Approach Speed 2").
(9) The position moved from the first zero point signal (Phase-C pulse) by the Zero Point Return Final Travel Distance (SERVOPACK user constant Cn-0028 "Zero Point Return Final Travel Distance") after the DEC is detached from the deceleration LS is taken as the zero point in the machine coordinate system.
A zero point position offset value can also be set. (When 100 is set as a zero point position offset value, the position data is 100 .) Set the Zero Point Position Offset Value by the motion setting parameter (OLC006).
(10) When the Positioning completion range (OWCOOE) is reached after issuing is completed (Bit 2 of IWC015 is turned ON), the zero point return operation is completed. Upon completion of zero point return operation, the Zero point return completion status ZRNC (Bit 6 of IWC015) is turned ON .
(11) After checking that the Zero point return completion status ZRNC (Bit 6 of IWC015) has been turned ON, set NOP $(=0)$ to the Motion Command Code (OWC020).
(1) Set the motion fixed parameter.
Set the initial value of the motion setting parameter.

Select the Position Control Mode (PCON).

(3) Set the motion setting parameter
(4)Tum the Servo ON (RUN).
(5) Issue the motion command "Zero Point Return". (ZRET).
\downarrow
(6) Movement is made in the designated direction at the Rapid Feed Speed.

$$
\downarrow
$$

(7) The speed is decelerated to the approach speed on the falling edge of the deceleration LS.

-1

(8) The speed is decelerated to the creep speed at the first Phase-C position after the DEC is detached from the deceleration LS.
(9) The position moved from the first zero point signal by the Zero Point Return Final Travel Distance after the dog is detached from the deceleration LS is taken as the zero point in the machine coordinate system.

\downarrow

(10) The Zero Point Return Completion Status ZRNC is turned ON.
(11) Cancel the motion command (Issue NOP (=0).)

The operation in \square should be executed by the system.

The operation in \qquad should be performed by the user.

- An example of user programs (zero point return)

Fig. 3.9 An Example of Zero Point Return Patterns (DEC + Phase-C Pulse)

<Operating Conditions>

In the pattern shown in Fig. 3.9, zero point return is performed.

> Zero point return method: DEC + Phase-C Pulse

In this example, the first axis of module No. 1 is used.
If the module No. and/or axis No. is different, reread the register Nos., referring to 1.3 "Module No. and Motion Parameter Register No."
For details of the registers (OW $\square \square \square \square$) in use, refer to Chapter 5 "Motion Parameters."

Fig. 3.10 An Example of Zero Point Return Programs (DWG H03)
The example in Fig. 3.10 is simplified, but each register can be freely controlled by user programs.

- Connection of the zero point return signals

Connect the "Deceleration LS" and "ZERO signal" signals which are used for zero point return t 1 CN of the SERVOPACK.

- "Deceleration LS" signal: 1CN Pin 9. Zero point deceleration LS (/DEC)
- "ZERO signal" signal: 1 CN Pin 10 External latch input (EXT)
- Connection of the zero point return signals

3.5 Interpolation (INTERPOLATE)

Interpolation feed is performed according to the moment-to-moment position data issued from the CPU module.

Interpolation feed on each axis is performed as follows.
The register Nos. are intended for the first axis of module No. 1. If the module No. and/or axis No. is different, reread the register Nos., referring to 1.3 "Module No. and Motion Parameter Register No." Motion parameters to be used for interpolation feed are marked with " \bigcirc " in the "Interpolation" column under "Motion Command Code" in 5.1.2 "List of Motion Setting Parameters" and 5.1.3 "List of Motion Monitoring Parameters."
[Example]
(1) Set the motion fixed parameters and the initial values of the motion setting parameters that suit your machine.
(Note) Make sure to set Bit 7 (Motion Command Use Selection) of motion fixed parameter No. 14 "Additional Function Use Selection" to 1 ($=$ use).
Also, make sure to set Bit 8 (Motion Command Code Validity Selection) of the motion setting parameter "RUN Mode Setting (OW $\square \square 00$)" to 1 (= valid).
(2) Select the Position Control Mode (PCON) (Bit 2 of OWC000).
(3) Set the Position Command (OLC012). Set motion setting parameters to be used for Interpolation (INTERPOLATE) such as the Filter Time Constant (OWC014), if necessary.
(4) Turn the Servo ON (RUN) (Bit 0 of OWC001).
(5) Set Interpolation (INTERPOLATE) to the Motion Command Code (OWC020).
(6) By setting Interpolation (INTERPOLATE) to the Motion Command Code, interpolation feed is performed on the axis in accordance with the designated motion parameters.
(7) Stop the update of the Position Reference (OLC012).
(8) When the Positioning completion range (OWC00E) is reached after issuing is completed (Bit 2 of IWC015 is turned ON), the Positioning completion signal POSCOMP (Bit D of IWC000) is turned ON .

The operation in \square should be performed by the user. The operation in \square should be executed by the system

3.6 Interpolation with Position Detecting Function (LATCH)

While interpolation feed is performed in the same way as Interpolation (INTERPOLATE), the curren position is latched according to the LATCH signal and the latched position converted in the reference uni system is reported.
As the LATCH signal, a special discrete input (EXM signal) is used. For details of interpolation operation refer to 3.5 Interpolation (INTERPOLATE).
(Note) To latch again after latching the current position counter by the LATCH signal, set NOP to the motion command, ans then issue the LATCH command.

3.7 Constant Speed Feed (FEED)

Rapid feed is performed toward an infinite distance with the designated acceleration time constant and at the designated rapid feed speed. The rapid feed speed can be changed even during operation. By setting NOP $(=0)$ to the Motion Command Code (OW $\square \square 20$), the operation is decelerated to stop.

Constant speed feed on each axis is performed as follows. The register Nos. are intended for the first axis of module No. 1. If the module No. and/or axis No. is different, reread the register Nos., referring to 1.3 "Module No. and Motion Parameter Register No." Motion parameters to be used for constant speed feed are marked with " O " in the "Constant Speed Feed" column under "Motion Command Code" in 5.1.2 "List of Motion Setting Parameters" and 5.1.3 "List of Motion Monitoring Parameters."
(1) Set the motion fixed parameters and the initial values of the motion setting parameters that suit your machine.
(Note) Make sure to set Bit 7 (Motion Command Use Selection) of motion fixed parameter No. 14 "Additional Function Use Selection" to 1 ($=$ use).
Also, make sure to set Bit 8 (Motion Command Code Validity Selection) of the motion setting parameter "RUN Mode Setting (OW $\square \square 00$)" to 1 (= valid).
(2) Select the Position Control Mode (PCON) (Bit 2 of OWC000).
(3) Set the Rapid Feed Speed (OLC022 or OWC015).

Set motion setting parameters to be used for Constant Speed Feed (FEED) such as the Linear Acceleration Time Constant (OWC00C) and the Filter Time Constant (OWC014), if necessary.
(4) Turn the Servo ON (RUN) (Bit 0 of OWC001).
(5) Set Constant Speed Feed (FEED) to the Motion Command Code (OWC020).
(6) By Setting Constant Speed Feed (FEED) to the Motion Command Code, rapid feed is performed on the axis in accordance with the designated motion parameters.
Rapid feed cannot be held.
(7) To stop (abort) rapid feed, set NOP $(=0)$ to the Motion Command Code (OWC020).
(8) When the Positioning completion range (OWCOOE) is reached after issuing is completed (Bit 2 of IWC015 is turned ON), the Positioning completion signal POSCOMP (Bit D of IWC000) is turned ON.

The operation in \square should be executed by the system
The operation in should be performed by the user.

- An example of user programs (constant speed feed)

Fig. 3.11 An Example of Constant Speed Feed Patterns
$<$ Preconditions>
The motion fixed parameters and the initial values of the motion setting parameters are the sam as in 5.3 "Examples of Motion Parameter Settings."
<Operating conditions>
In the pattern shown in Fig. 3.11, the rapid feed speed $=5000000$ pulses $/ \mathrm{min}$.
Rapid feed speed: OLC022 $=5000(1=1000$ pulses $/ \mathrm{min})$
In this example, the first axis of module No. 1 is used.
If the module No. and/or axis No. is different, reread the register Nos., referring to 1.3 "Modu No. and Motion Parameter Register No."

For details of the registers (OW $\square \square \square[\square[\square$) in use, refer to Chapter 5 "Motion Parameters."

Fig. 3.12 An Example of Constant Speed Feed Programs (DWG H03)
The example in Fig. 3.12 is simplified, but each register can be freely controlled by user prograr

3.8 Constant Step Feed (STEP)

Positioning is performed in the designated direction, by the designated movement distance (amount of STEP movement), with the designated acceleration time constant, and at the designated rapid feed speed. The rapid feed speed can be changed even during operation. If the movement distance is changed during operation, the new value is reflected at the time of execution of the next Constant Step Feed (STEP).

Constant step feed on each axis is performed as follows. The register Nos. are intended for the first axis of module No. 1. If the module No. and/or axis No. is different, reread the register Nos., referring to 1.3 "Module No. and Motion Parameter Register No." Motion parameters to be used for constant step feed are marked with " \bigcirc " in the "Constant Step Feed" column under "Motion Command Code" in 5.1.2 "List of Motion Setting Parameters" and 5.1.3 "List of Motion Monitoring Parameters."
(1) Set the motion fixed parameters and the initial values of the motion setting parameters that suit your machine.
(Note) Make sure to set Bit 7 (Motion Command Use Selection) of motion fixed parameter No. 14 "Additional Function Use Selection" to 1 (= use).
Also, make sure to set Bit 8 (Motion Command Code Validity Selection) of the motion setting parameter "RUN Mode Setting (OW $\square \square 00$)" to 1 (= valid).
(2) Select the Position Control Mode (PCON) (Bit 2 of OWC000).
(3) Set the amount of STEP Movement (OLC028) and the Rapid Feed Speed (OLC022 or OWC015).
Set motion setting parameters to be used for Constant Step Feed (STEP) such as the Linear Acceleration Time Constant (OWC00C) and the Filter Time Constant (OWC014), if necessary.
(4) Turn the Servo ON (RUN) (Bit 0 of OWC001).
(5) Set Constant Step Feed (STEP) to the Motion Command Code (OWC020).
(6) By setting Constant Step Feed (STEP) to the Motion Command Code, positioning operation is performed on the axis in accordance with the designated motion parameters.
To hold positioning, tum ON HOLD (Bit 0 of OWC021). Upon completion of holding, HOLDL (Bit 1 of IWC015) is turned ON. To cancel holding, turn OFF HOLD (Bit 0 of OWC021).
To abort positioning, turn ON ABORT (Bit 1 of OWC 021) or set NOP $(=0)$ to the Motion Command Code.
During abort, BUSY (Bit 0 of IWC015) is turned ON, and upon completion of abort, it is turned OFF.
(Note) Even if abort is canceled (ABORT is turned OFF) at the time of completion of abort, positioning is kept stopped.
(7) When the Positioning completion range (OWC00E) is reached after issuing is completed (Bit 2 of IWC015 is turned ON), the Positioning completion signal POSCOMP (Bit D of IWC000) is turned ON .
(8) When positioning is completed, cancel the motion command "Constant Step Feed."
(Note) Since the rise of constant step feed is detected, once you have executed Constant Step Feed, you must set NOP to the motion command and set Constant Step Feed again to the motion command.
(1) Set the motion fixed parameters.

Set the initial values of the motion setting parameters.

Set the motion setting parameters.

(5) Issue the motion command "Constant Step Feed" (STEP)
(6) Constant step feed is started on the axis.
(7) The Positioning Completion Signal (POSCOMP) is turned ON.
(8) Cancel the motion command. (Issue NOP $(=0)$.)

The operation in \qquad should be executed by the system. The operation in \square should be performed by the user.

- An example of user programs (constant step feed)

Fig. 3.13 An Example of Constant Step Feed Patterns
<Preconditions>
The motion fixed parameters and the initial values of the motion setting parameters are the s : as in 5.3 "Examples of Motion Parameter Settings."

<Operating conditions>

In the pattern shown in Fig. 3.13, the operation stops at the STEP movement amount of 2 pulses.

Amount of STEP movement: OLC028 $=2000$ pulses
In this example, the first axis of module No. 1 is used.
If the module No. and/or axis No. is different, reread the register Nos., referring to 1.3 "Mor No. and Motion Parameter Register No."

For details of the registers (OW $\square \square \square \square$) in use, refer to Chapter 5 "Motion Parameters."

Fig. 3.14 An Example of Constant Step Feed Programs (DWG H03)
The example in Fig. 3.14 is simplified, but each register can be freely controlled by user programs.

3.9 Zero Point Setting (ZSET)

The position obtained by executing "Zero Point Setting" is taken as the zero point in the machine coordinat system. Therefore, the zero point can be set without zero point return operation.

When using the software limit check, the zero point return operation or "Zero Point Setting" must b executed.
"Zèro Point Setting" is performed as follows.

[Example]

(1) Move the machine to the zero point by constant speed feed, constant step feed or manu operation.
(2) Select the Position Control Mode (PCON) (Bit 2 of OWC000).
(Note) Make sure to set Bit 7 (Motion Command Use, Selection) of motion fixed parameter No. "Additional Function Use Selection" to 1 ($=$ use).
Also, make sure to set Bit 8 (Motion Command Code Validity Selection) of the motion setti1 parameter "RUN Mode Setting (OW $\square \square 00$)" to 1 (= valid).
(3) Set Zero Point Setting " 9 " to the Motion Command Code (OW $\square \square 01$).
(Note) The Servo ON (Bit 0 of OW $\square \square 01$) may be ON or OFF. If motion fixed parameter No. 3 "Encoc Selection" is set to absolute value encoder ($=1$) and Bit 5 (Axis selection) of motion fixed parame No. 17 "Motion Controller Function Selection Flags" is set to "infinite-length axis" (= 1), Zero Po Setting (ZSET) cannot be executed during axial movement.
(4) Upon completion of zero point setting, the zero point setting completion (Bit 3 of IW $\square \square 1$ and Zero point return completion status (Bit 6 of IW $\square \square \square 15$) are turned ON.
(5) When the Zero point setting completion is turned ON , cancel the motion command "Ze Point Setting." (Set NOP. $(=0)$ to the motion command code.)

\triangle Caution

"Zero Point Setting (ZSET)" is a command for setting the "zero point in the machir coordinate system." Therefore, if an incorrect position is set by "Zero Poil Setting", movements in subsequent operations will differ from the actually intend ϵ ones. Before running the machine, make sure to confirm that the zero point in tt machine coordinate system is correctly set.
Neglecting this check may result in damage to tools due to interference or an accident causiv injury or death.

4 I/O AND INVERTER

This chapter describes the I/O and inverter communications of the SVB module.

4.1 I/O and Inverter

The SVB module can perform control transmission and message transmission in connection with I / C modules and inverters as slave equipment.

Control transmission is cyclically executed between the SVB module and slave stations.
Each station's I/O area is assigned by CP-717.
If slave stations are inverters, inverter constants can be written and read and the data can be traced by usin the system standard functions.
The system standard functions "ICNS-WR," "ICNS-RD" and "ITRC-RD" are used, respectively.
For message transmission of user data, the system standard functions "MSG-SND" and "MSG-RCV" ar used.

There are two types of transmission procedures: MEMOBUS procedure and non-procedure.
The transmission status is output to the corresponding registers as parameters of the "MSG-SND" an "MSG-RCV" functions.

For details of the system standard functions, refer to the "CP-9200SH Programming Manual."

This module can be connected with the following I/Os and inverters.
Table 4.1 Details of Slave Stations

Assignment name	Equipment name
VS-676H5	VS-676H5 (inverter)
VS-676H5T	VS-676H5T (inverter)
VS-616G5	VS-616G5 (inverter)
RIO-01	CP-816 remote I/O
RIO-06	CP-816 remote I/O $:$
ABS_CODER	Absocoder
JEPMC-IO350	Distributed I/O

To connect the above equipment, transmission parameter setting and I/O assignment to each station a necessary.
Double-click "M-LINK" displayed in the SVB slot on the Module Configuration window, and t] MECHATROLINK (CERF) setting window appears.

4.2 Setting Transmission Parameters

For communicating with I/Os and inverters, the following transmission parameters must be set.

MECHATROLINK (CERF) Transmission parameter setting
Master/Slave
Own Station Address
Message Trust Level

Max Slave ST Number

Master (fixed)
0 (fixed)
0 : A command is sent only once, and the response from the other side is waited indefinitely.

1: A command is sent once, and if there is no response in 8 seconds, the command is sent again.

2: When sending a command, data are sent twice in succession word by word, and then response from the other side waits indefinitely. The transmission reliability improves but the transmission time increases twofold.

In combination with the transmission speed and transmission cycle, the following 12 setting patterns of Max Slave ST Number exist. (Refer to Table 4.2.)

Table 4.2 List of Settings of Max Slave ST Number

Max Slave ST Number	Transmission Speed	Transmission Cycle
2	4 Mbps	$500 \mu \mathrm{~s}$
2	10 Mbps	$250 \mu \mathrm{~s}$
3	2 Mbps	1 ms
6	4 Mbps	1 ms
6	10 Mbps	$500 \mu \mathrm{~s}$
7	2 Mbps	2 ms
14	4 Mbps	2 ms
14	10 Mbps	1 ms
15	2 Mbps	4 ms
29	4 Mbps	4 ms
29	10 Mbps	2 ms
30	10 Mbps	4 ms

Note

1. Stations by the Max Slave ST Number cannot always be connected. The number of stations which can be connected actually varies within the range of the Max Slave ST Number depending on the connecting slave type and the scan setting time.
(The Max Slave ST Number will never be exceeded.) As a guide, carry out an assignment that meets the two conditions shown in <Precaution $1>$.
2. After changing the transmission parameters, turn the power of CP-9200SH OFF, and then turn ON again.
3. Set the same transmission speed between the master and slave stations.
4. Set the transmission parameters to 14 stations, 4 Mbps , and 2 ms when MECHATROLINK SERVOPACKs are also connected.

4.2.1 The Number of Connectable Slave Stations

Assign the I/Os to meet the following conditions.
(1) Obtain the time required for the communication interrupt process as follows:

SIO_TIM $\quad=31(\mu \mathrm{~s}) \times$ number of assigned RIO-01, ABS_CODER and JEPMC-IO35C	
SEQIO_TM	$=46(\mu \mathrm{~s}) \times$ number of assigned RIO-06
INV_TIM $\quad=46(\mu \mathrm{~s}) \times$ number of assigned inverters	
INT_TIM $\quad=25(\mu \mathrm{~s})+$ SIO_TIM + SEQIO_TIM + INV_TIM	
INT_TIM $:$ Time required for the communication interrupt $(\mu \mathrm{s})$	
INT_CYC $\quad:$Communication cycle (communication cycle selected by setting Max Slave ST Number)	

Set the time required for the communication interrupt as it is less than 90% of the communication cycle. (Make the units s INT.TIM and INT_CYC coincide.)
(Condition 1) INT_TIM $<$ INT_CYC $\times 0.9$
(2) Next, obtain the time required for the high-speed scan interrupt process as follows:

1 OH -TIM	$\begin{aligned} & =90(\mu \mathrm{~s}) \times \text { number of H-scan assigned RIO-01, RIO-06, ABS_CODER } \\ & \text { and JEPMC-IO350 } \end{aligned}$
IOL_TIM	$=34(\mu \mathrm{~s}) \times$ number of L-scan assigned RIO-01, RIO-06, ABS_CODER and JEPMC-IO350
INVH_TIM	$=105(\mu \mathrm{~s}) \times$ number of inverters
HSCAN_TIM	$\begin{aligned} = & 200(\mu \mathrm{~s})+(15(\mu \mathrm{~s}) \times \text { SLV_NUM })+\text { IOH_TIM }+ \text { IOL_TIM }+ \\ & \text { } \mathbf{N V H} \text { _TIM } \end{aligned}$
HSCAN_TIM	: Time required for the SVB high-speed scan interrupt (μ s)
SLV_NUN	: Maximum number of slave stations (number of stations set by Max Slave ST Number)
SCAN_TIME	: CPU high-speed scan setting value

Set the sum of the time required for the SVB high-speed scan interrupt and the time required $f i$ the communication interrupt to less than 80% of the CPU high-speed scan setting value.
(Make the units of HSCAN_TMM, SCAN_TIM, INT_TIM, INT_CYC coincide.) If SCAN_TIM \div INT_CYC leaves a remainder, add 1 to the quotient.)
(Condition 2) HSCAN_TIM + [(SCAN_TIME \div INT_CYC) + INT_TIM] < SCAN_TIME: 0.8
[Example]

Max Slave ST Number: CPU high-speed scan setting: Number of slaves:

14 Transmission speed: 4 Mbps Communication cycle: 2 m 6 ms 3 RIO-01 (L-scan assigned) 6 RIO-06 (H-scan assigned: 4, L-scan assigned: 2) 5 inverters

SIO_TIM $=31(\mu \mathrm{~s}) \times 3=93$
SEQIO_TIM $=46(\mu \mathrm{~s}) \times 6=276$
$\mathbb{N V}_{-}$TIM $\dot{=} 46(\mu \mathrm{~s}) \times 5=230$

```
INT_TIM \(=25(\mu \mathrm{~s})+93+276+230=624(\mu \mathrm{~s})\)
\(624(\mu \mathrm{~s})<2(\mathrm{~ms}) \times 1000 \times 0.9\)
\(624(\mu \mathrm{~s})<1800(\mu \mathrm{~s}) \cdots \cdots . . . . . . . . . . . .\). Condition 1
    IOH_TIM \(=90(\mu \mathrm{~s}) \times 4=360\)
    IOL_TIM \(=34(\mu \mathrm{~s}) \times 5=170\)
    INVH_TIM \(=105(\mu \mathrm{~s}) \times 5=525\)
HSCAN_TIM \(=200(\mu \mathrm{~s})+(15(\mu \mathrm{~s}) \times 14)+360+170+525=1465(\mu \mathrm{~s})\)
\(1465(\mu \mathrm{~s})+[(6(\mathrm{~ms}) \div 2(\mathrm{~ms})) \times 624(\mu \mathrm{~s})]<6(\mathrm{~ms}) \times 1000 \times 0.8\)
\(1465(\mu \mathrm{~s})+(3 \times 624(\mu \mathrm{~s}))<6000(\mu \mathrm{~s}) \times 0.8\)
3337 \((\mu \mathrm{s})<4800(\mu \mathrm{~s}) \cdot \cdots \cdot \ldots . . . . . . . . . .\). Condition 2
```

Since both of condition 1 and 2 are met, this assignment is allowable.

4.3 Setting I/O Assignment

For actually performing control transmission and message transmission with slave equipment, I/C assignment is necessary.

Click "I/O Assignment" on the Transmission Parameters window, and the I/O Assignment window appears

Configuration of the I/O Assignment window

(1) TYPE

Set the connecting equipment names. (For the selectable models, refer to Table 4.3.)
(2) INPUT, OUTPUT

Set the input registers (IW $\square \square \square \square$) and output registers ($O W \square \square \square$) within the range betwe "I/O Start Register" and "I/O End Register" set on the Module Configuration window.
(Note) Set the register No. not to overlap between the INPUT and OUTPUT registers.
(3) SIZE

The size is fixed according to the slave equipment. (Refer to Table 4.3.)
(4) SCAN

Set the control data updating cycle for each station. Some slave equipment do not need this setti (Refer to Table 4.3.)

Table 4.3 Details of the Transmission Parameter Settings

; Equipment name	TYPE	SIZE	SCAN	
			High-speed SCAN	Low-speed SCAN
VS-676H5(inverter)	VS-676H5	16	Setting unnecessary	
VS-676H5T	VS-676H5T	16	Setting unnecessary	
VS-616G5	VS-616G5	16	Setting unnecessary	
CP-816 remote I/O (RIO-01)	RIO-01	1	Settable	Settable
CP-816 remote I/O (RIO-06)	RIO-06	1	Settable	Settable
Absocoder	ABS_CODER	4	Settable	Settable
Distributed I/O	JEPMC_IO350	4.	Settable	Settable

. 4 Types of Messages

For message transmission, three types of messages can be used: MEMOBUS message, general-purpose message and inverter message.
The relationship between usable messages according to slave equipment is shown in Table 4.4.
Table 4.4 Details of the Usable Messages

Equipment name		MEMOBUS message (MEMOBUS procedure)	General-purpose message (non-procedure)	Inverter message (inverter function)*
VS-676H5 (inverter)	$216 \mathrm{IF} / \mathrm{H5}$	\times	\times	\bigcirc
VS-676H5T (inverter)	$216 \mathrm{FF} / \mathrm{H} 5$	\times	\times	\bigcirc
VS-616G5 (inverter)	$216 \mathrm{FF} / \mathrm{G} 5$	\times	\times	\bigcirc
	CP-916B	\bigcirc	\bigcirc	\bigcirc
CP-816 remote I/O (RIO-01)	\times	\times	\times	
CP-816 remote I/O (RIO-06)	\bigcirc	\times	\times	
Absocoder	\times	\times	\times	
Distributed I/O	\times	\times		

* By creating user programs using standard system functions ("ICNS-WR", "ICNS-RD", "ITRC-RD") for the CPU module, inverter constants can be written and read, and trace data can be read.
For details of the system standard functions, refer to the Machine Controller CP-9200SH Programming Manual (SIE-C879-40.3).

4．5 Control Data Configuration

The data configuration which is used for control data transmission with slave equipment is shown below．
（1）RIO－01，RIO－06

（2）Inverter

（3）MP930 I／O unit

（4）Absocoder

	Command data（4 words）	
ow	\rightarrow	
owดロロロ＋1	－	invalid
ow $]$［ ${ }^{\text {a }}+2$	I	
ow $\square \square \square \square+3$	\rightarrow	

4.6 Control Command/Response Data

Control Command Data

Address	H5 (Textiles)	H5 (General)	G5
0010	*RUN signal	* RUN signal	RUN signal
0012	* Freque/ncy reference	* Reference speed	Speed reference
0014	* V/f voltage micro- adjustment	* Torque reference	Torque reference (only for vectors with PG)
0016	* Target frequency (PM)	* Torque compensation	Torque compensation (only for vectors with PG)
0018	Not used.	External magnetic flux reference	Not used.
001 A	Inverter Unit AOCH1 output	Inverter Unit AOCH1 output	Inverter Unit AOCH1 output
001 C	Inverter Unit AOCH2 output	Inverter Unit AOCH2 output	Inverter Unit AOCH2 output
001 E	Inverter Unit DO output	Inverter Unit DO output	Inverter Unit DO output
0020	Option AO-12CH1 output	Option AO-12CH1 output	Not used.
0022	Option AO-12CH2 output	Option AO-12CH2 output	Not used.
0024	Option DO-08 output	Option DO-08 output	Not used.
0026	Not used.	Not used.	Not used.
0028	Not used.	Not used.	Not used.
002 A	Not used.	Not used.	Not used.
002 C	Not used.	Not used.	Not used.
002 E	Not used.	Not used.	Not used.

Note

1. Data marked with an asterisk $\left(^{*}\right)$ is refreshed during the high-speed scan (1 ms) at the Inverter (H5) end and consists of 4 successive words from the top.
2. Data marked with an asterisk $\left(^{*}\right.$) is synchronized on the high-speed scan on the option board at the option end. All other data is synchronized and refreshed in the low-speed scan.
3. All G5 data is read in $5-\mathrm{ms}$ cycles. Data is refreshed on the high-speed scan at the option end.

Run Signals

Bit	H5 (Textiles)	H5 (General)	G5
0	RUN/STOP	RUN/STOP	RUN/STOP
1	Reverse	Reverse	Reverse
2	Base block	Base block	Base block
3	Trace start/stop (1: Stop)	Trace start/stop (1: Stop)	Trace start/stop (1: Stop)
4	External error	External error	External error
5	Error reset	Error reset	Error reset
6	Acceleration-decelerationtime change	Acceleration-decelerationtime change	0
7	Acceleration-deceleration disabled (hold speed)	Acceleration-deceleration disabled (hold speed)	0
8	Dynamic brake reference	Initial excitation	Dynamic brake reference
9	Integral reset (ASR)	Integral reset (ASR)	Integral reset (ASR)
A	Integral hold (ASR)	Integral hold (ASR)	0
B	Soft starter cancel	Soft starter cancel	0
C	Trace reset (after failure) (1: RST)	Trace reset (after failure) (1: RST)	Trace reset (after failure) (1: RST)
D	0	Servo ON	Servo ON
E	0	Speed/torque control switching	Speed/torque control switching
F	0	0	

Note
Trace start/stop and trace reset are commands to option boards from the host and are not used by the Inverter Control Section Unit.

- Control Response Data (16 Words) Inverter \rightarrow Option

Address	H5 (Textiles)	H5 (General)	G5
0030	*Status signal	*Status signal	Status signal
0032	*Speed feedback	*Speed feedback	Speed feedback
0034	* Main circuit DC voltage	* Torque reference	Torque reference
0036	* Instantaneous power	* Pulse generator counter value for speed detection	Pulse generator counter value for speed detection
0038	Speed reference	Speed reference	Speed reference
003 A	Primary frequency reference	Primary frequency reference	Primary frequency reference
003 C	Output current	Output current	Output current
003 E	Output voltage reference	Output voltage reference	Output voltage reference
0040	Main circuit DC voltage	Main circuit DC voltage	Main circuit DC voltage
0042	Not used.	Torque feedback	Error alarm signal 1
0044	Error alarm signal 1	Error alarm signal 1	Error alarm signal 2
0046	Error alarm signal 2	Error alarm signal 2	Error alarm signal 3
0048	Inverter Unit AI CH3 input	Inverter Unit AI CH3 input	Inverter Unit AI CH3 input
004 A	Inverter Unit DI input	Inverter Unit DI input	Inverter Unit DI input
004 C	Inverter Unit AI CH1 input	Inverter Unit AI CH1 input	Inverter Unit AI CH1 input
$004 E$	Instant amount of drop	Instant amount of drop	Pulse generator counter CH2 input

Note

1. Data marked with an asterisk (${ }^{*}$) is refreshed during the high-speed scan (1 ms) at the Inverter (H5) end and consists of 4 successive words from the top.
2.H5 data marked with an asterisk $\left({ }^{*}\right)$ is synchronized on the high-speed scan on the option board at the option end. All other data is synchronized and read on the low-speed scan.
2. All G5 data is read in 5 ms cycles. Data is refreshed in the high-speed scan at the option end.

Status Signals

Bit	H5 (Textiles)	H5 (General)	G5
0	Running	Running	Running
1	Zero speed	Zero speed	Zero speed
2	Reversing :	Reversing :	Reversing
3	Reset signal inputting	Reset signal inputting	Reset signal inputting
4	Speed match :	Speed match	Speed match
5	Inverter preparations completed	Inverter preparations completed	Inverter preparations completed
6	Minor failure	Minor failure	Minor failure
7	Major failure	Major failure	Major failure
8	Reference error	Reference error	0
9	Power outage recovery/power interruption recovery	Local/remote	Loca/remote
A	Local/remote	Local/remote	Local/remote
B	Powering up/regenerating	Powering up/regenerating	0
C	Current limiting	Current torque limiting	0
D	Speed limiting	Speed limiting $:$	0.
E	0	Servomotor selection (No.1/No.2)	Servomotor selection (No.1/No.2)
F	0	Servo zeroing completed	Servo zeroing completed

4.7 VS-616G5 Inverter Connection Example

This section describes and SVB application example using 216IF/G5 Modules.

4.7.1 Prepared Items and Startup Procedure

- Prepared Items

Name	Model
Inverters	-
Servomotors	-
216IF/G5 Module	$87216-1200 \square$-SOXOY
216IF Transmission Cable	-

- Startup Procedure

This section describes the startup procedure when Inverters are controlled by a 216IF/G5 Module.

1. Mount and wire the $216 \mathrm{~F} / \mathrm{G} 5$ card.
2. Set Inverter parameters.
3. Set the SVB MECHATROLINK.
4. Create a ladder logic program.
5. Check operation

4.7.2 216IF/G5 Module Specifications

Appearance

LED Indicators

$\begin{aligned} & \text { 关 } \\ & \text { m } \\ & \text { 忍 } \end{aligned}$	Indicator	Color	Status When Lit
	RUN	Green	Normal operation.
	ERROR	Red	Failure occurred/transmission path disconnected.
	TX	Green	Sending/receiving data.

DIP Switch Settings

Pin Number	Function	Setting	Description			
1	RESET	ON	Hardware reset			
.		OFF	Normal operation			
2	Mode	ON	Standard Mode			
.	Switching		Expansion Mode			
34	Transmission Speed	Pin 3	Pin 4	Transmission Speed		
		ON	ON	0.5 Mbps		
		ON	OFF	1 Mbps		
		OFF	ON	2 Mbps		
		OEF	ORF	4 Mbps		
5	Station Address	Pin 5	Pin 6.	Pin 7	Pin 8.	Station Address
7		OFF	OFF	OFF	ON	1
8		OFF	OFF	ON	OFF	2
		OFF	OFF	ON ;	ON	3
		:	:	:	:	:
		ON	ON	ON	OFF	14
		ON	ON	ON	ON	15

Note

1. Set pins 1 to 4 to the settings that are highlighted.
2. Set pins 5 to 8 according to the station address.

Be sure to set the pins prior to turning ON the Inverter. The pins cannot be set if the Inverter is OI

Connector

This section describes the model number and pin layout for the connector to the $216 \mathrm{IF} / \mathrm{G} 5$ Module transmission path.

- Model: MC1.5/2-G-5.83-AU (made by PHOENIX CONTACT co. jp.)
- Pin Layout

Pin No.	Signal Name
1	S* * Send/receive signal (-)
2	S Send/receive signal (+)

Procedure for Preparing 216IF/G5 Cable

Be sure to use twisted-pair cables with wire sizes AWG\#24 to AWG\#20 (0.2 to $0.51 \mathrm{~mm}^{2}$) on the connector from the 216IF/G5 to the SVB.

This section describes the procedure used to prepare the cable.

1. Strip the wire of its covering for 6.5 mm from the end.

2. Secure the wire to the plug.

Insert the core wire deeply into the plug and tighten the screws to a tightening torque 0.3 to 0.4 $\mathrm{N} \cdot \mathrm{m}$.

4.7.3 Mounting Procedure

This section describes the procedure used to mount a 216IF/G5 Module.

1. Turn OFF the main circuit power supply of the Inverters and wait at least one minute (at least 3 minutes for Inverters rated 30 kW or higher).
2. Remove the front cover of the Inverters and check to see if the charge indicator is not lit.
3. Check the Option Card mounting locations (A, C and D).
4. Align the Option Card connector with the 2CN connector on the Control PCB and push the spacers into the spacer mounting holes on the card end.

With the spacers in the holes, push until you hear a click.

This section describes the procedure used to wire the 216IF/G5 Card.
216IF/G5 Card Wiring

Connection with SVB Module

The following figure shows the procedure used to connect multiple VS-616G5 stations to an SV Module.

4.7.5 VS-616G5 Constant Settings

Set these constants to control Inverters from a 216 IF/G5 Module. The following table shows constants required for lower limit settings.

Constant No.	Description
A1-01	Constant access level
A1-02	Control mode selection
b1-01	Frequency reference selection
b1-02	RUN commnad selection

Constant Access Level: A1-01

Setting

Set the level for accessing constants (range that can be set and checked).

Constant No.	Name	Change While Running	Setting Range	Units	Factory Setting	Access Level			
	V/f without PG	V/f with PG	Vector without PG	Vector with PG					
A1-01	Constant access level	Possible	0 to 4	-	$2(\mathrm{Q})$	Q	Q	Q	Q

Set ADVANCED level (4).

Explanation of Settings

Setting	Name	Description
0	Monitor only	Enables on the drive mode and environmental settings to be checked and set. The setting can be used to prevent constants from being changed. (Write protect function)
1	Check user selected constants only	Enables only user selected constants (maximum of 32) to be checked and set. Set the constants that can be checked and set at A2-01 to A2-32.
2	QUICK-START	Enables only constants (maximum of 25) required to start up the Inverter to be checked and set.
3	BASIC	Enables constants in general use to be checked and set.
4	ADVANCED	Enables all constants to be checked and set.

Control Mode Selection: A1-02

Setting

Select one of four control modes. The setting will not be initialized when the constants ar initialized.

Constant No.	Name	Change While Running	Setting Range	Units	Factory Setting	Access Level			
						$\begin{gathered} \text { V/f } \\ \text { without } \\ \text { PG } \end{gathered}$	Vif with	Vector without PG	Vector with PC
A1-02	Control mode selection	Not . possible	0 to 3	-	2 (Vector without PG	Q	Q	Q	Q

Set 2 for vector control without a pulse generator.
Explanation of Settings

Setting	Control Mode	
$\mathbf{0}$	V/f control without a pulse generator	Normal V/f control \cdot
$\mathbf{1}$	V/f control with a pulse generator	V/f control using a pulse generator speed control card
$\mathbf{2}$	Vector control without a pulse generator	Vector control based on speed data in the Inverter
$\mathbf{3}$	Vector control with a pulse generator	Vector control using a control card connected to a pulse generator

Frequency Reference Selection: b1-01
Setting
Select the procedure that will be used to input the frequency reference.

Constant No.	Name	Change While Running	Setting Range	Units	Factory Setting	Access Level			
						$\begin{array}{\|c\|} \hline \text { V/f } \\ \text { without } \\ \text { PG } \end{array}$	V/f with PG	Vector without PG	Vectc with F
b1-01	Frequency reference selection .	Not possible	0 to 3	-	1	Q	Q	Q	Q

Set 3 because the frequency reference will send from the Option Card.

Explanation of Settings

Setting	Description
0	Digital Operator
1	Control circuit terminal (analog input)
2	Transmission
3	Option Card

Run Reference Selection: b1-02

Setting

Select the location that will input the run reference.

Constant No.	Name	Change While Running	Setting Range	Units	Factory Setting	Access Level			
						$\begin{array}{\|c\|} \hline \text { V/f } \\ \text { without } \\ \text { PG } \end{array}$	V/f with PG	Vector without PG	Vector with PG
b1-02	Run reference selection	Not possible	0 to 3	-	1	Q	Q	Q	Q

Set 3 because the frequency reference will be sent from the Option Card.

Explanation of Settings

Setting	Description
0	Digital Operator
1	Control circuit terminal (external terminal)
2	Transmission
3	Option Card

4.7.6 MECHATROLINK Definitions

Click M-Link at the SVB slot on the Modules Configuration Window, and click the I/O Assignment Tab in the MECHATROLINK Definition Window to define VS-616G5 as the device that will be connected.

4.7.7 Creating a Ladder Logic Program

5 MOTION PARAMETERS

This chapter provides a list of motion parameters with explanations and setting examples.

5.1 List of Motion Parameters

Each axis is provided with common parameter specifications. The register Nos. of each axis (axis 1 to 1^{4} are the register Nos. in Tables 5.2 and 5.3 plus axis offset. Each axis offset (axis ofs) is given by (axis No. $1) \times 40 \mathrm{H}$ (64 words). The " $\square \square$ " of the register Nos. differs according to the module No. For details, reff to 1.3 "Module No. and Module Parameter Register No."

All settings are automatically set to initial values when power is turned ON. If any data out of the settin range is set, the operation is performed at a value limited within the setting range.

Note
No. of registers with a different module No. are not consecutive.
Register Nos. of the same module No. are consecutive between axes No. 1 and 8 and between axe No. 9 and 14, but those between axes No. 8 and 9 are not consecutive.
Those with the same module No. are consecutive between axes.
Therefore, care should be taken if a subscript (i, j) is used on a user program.
(Example 1)
With $H W(O W) C 000 i$, read can be performed normally within the range of $\mathrm{i}=0$ to 511 .
With IW(OW)C000i, the register range of axes No. 1 to 8 of module No. 1, that is, the rang between IW(OW)C000 and IW(OW)C1FF can be read and written normally.
If $i>511$, read cannot be performed normally.
Be aware that register Nos. between axes No. 9 and 14 and of module No. 2 and after cannot b read with $-\mathrm{IW}(\mathrm{OW}) \mathrm{C} 000 \mathrm{i}$.
(Example 2)
Between axes No. 9 and 14 of the same module No.
With - IW $(O W) C 200 i$, read can be performed normally within the range of $\mathrm{i}=0$ to 383 .
With IW(OW)C200i, the register range between axes No. 9 and 14 of module No. 1, that is, th range between IW(OW)C200 and IW(OW)C37F can be read and written normally. If $i>383$, read cannot be performed normally.
Be aware that register Nos. between axes No. 1 and 8 and of module No. 2 and after cannot be rea with HiW(OW)C200i.

5.1.1 List of Motion Fixed Parameters

These parameters will, once set, normally be never changed as long as the configuration or specifications the machine are not changed. Set them with the "Fixed parameter" tab in the SVB definition window of C 717.

Note
Fixed parameters cannot be changed when the current value of Bit 0 of set parameter No. 2 "RU Command Setting (OW $\square \square 01$) is ON.
Be aware that if any motion fixed parameter is changed, position information, etc., will 1 initialized.

Table 5.1 List of Motion Fixed Parameters

No.	Name	Setting range/Bit name		Meaning
1	Axis Use Selection (USESEL)	0 or 1 (Initial value $=0$)		$\begin{aligned} & \text { 0: Not used } \\ & 1: \text { Used } \\ & \hline \end{aligned}$
2	Reserved		-	. -
3	Encoder Selection (ENCSEL)	$\begin{aligned} & 0 \text { or } 1 \\ & \text { (Initial value }=0 \text {) } \end{aligned}$		0: Incremental encoder 1: Absolute encoder
4	Reserved		-	-
5	Pulse Counting Mode Selection (PULMODE)	$\begin{aligned} & 4 \text { to } 6 \\ & \text { (Initial value }=6 \text {) } \end{aligned}$		4: A/B method (multiplied by 1) 5: AB method (multiplied by 2) 6: AB method (multiplied by 4)
6	Reserved		-	- -
7	Rated Motor Speed Setting (NR)	$\begin{aligned} & 1 \text { to } 32000 \\ & \text { (Initial value }=3000 \text {) } \end{aligned}$		1=1 $\mathrm{r} / \mathrm{min}$
8	Number of Feedback Pulses per Rotation (FBppr)	A multiple of 4 between 4 and 65532 (Initial value $=2048$)		$1=1$ puise/vev * Set a yet-to-be-multiplied value.
$\begin{gathered} 9 \\ 1 \\ 13 \end{gathered}$	Reserved		-	-
14	Reserved		-	-
15	Reserved		-	-
16	Simulation Mode Selection (SIMULATE)	0 or		0 : Normal operation mode 1: Simulation mode
17	Motion Controller Function Selection Flags (SVFUNCSEL)	Bit	0 to 3: CMD UNIT (Initial value $=0$)	Reference Unit Selection 0 : pulse (electronic gear invalid) 1: mm 2: deg 3: inch
			4: USE_GEAR (Initial value $=0$)	Electric Gear Selection 0 : Invalid 1: Valid
			5: PMOD_SEL (Initial value $=0$)	Axis Selection 0 : Finite-length axis 1: Infinite-length axis
			6: Reserved	- -
			7: USE_SLIMP (Initial value $=0$)	Software Limit (positive direction) Selection 0 : Invalid 1: Valid
			8: USE_SLIMN (initial value $=0$)	Software Limit (negative direction) Selection 0 : Invalid 1: Valid
			$\begin{aligned} & \text { 9: USE_OV } \\ & \text { (Initial value }=0 \text {) } \end{aligned}$	Override Selection 0 : Invalid 1:Valid
			10/11: Reserved	- -
			12: THROUMOD (Initial value $=0$)	Servo Driver Transparent Command Mode 0 : Invalid 1: Valid
			13/14: Reserved	- -
			15: SWGBVF (Initial value $=0$)	Interpolation Command Segment Distributing Function 0 : Valid 1: Invalid

Table 5.1 List of Motion Fixed Parameters (Cont'd)

No.	Name	Setting range/Bit name	- Meaning
18	Number of Digits Below Decimal Point	0 to 5 (Initial value $=3$)	Set the number of digits to the right of the decimal point of reference (Example) For the number of digits to the night of the decimal point $=3$, mm : One reference unit $=0.001 \mathrm{~mm}$ deg : One reference unit $=0.001 \mathrm{deg}$ inch : One reference unit $=0.001$ inch This parameter and the Reference Unit Selection (motion fixed parameter No.17.) gives the minimum reference unit. However, the minimum unit of "pulse" is not affected by this parameter.
19	Travel Distance per Machine Rotation (PITCH)	$\begin{aligned} & 1 \text { to } 2^{3 \pi}-1 \\ & \text { (Initial value }=10000) \end{aligned}$	1=1 reference unit
21	Servomotor Gear Ratio (GEAR MOTOR)	$\begin{aligned} & 1 \text { to } 65535 \\ & \text { (Initial value }=1 \text {) } \end{aligned}$	$1=1 \text { rotation }$
22	Machine Gear Ratio (GEAR MACHINE)	$\begin{aligned} & 1 \text { to } 65535 \\ & \text { (Initial value }=1 \text {) } \end{aligned}$	$1=1 \text { rotation }$
23	Infinite-length Axis Reset Position (POSMAX)	$\begin{aligned} & 1 \text { to } 2^{3 T}-1 \\ & \text { (lnitial value }=360000 \text {) } \end{aligned}$	1=1 reference unit
25	Maximum Number of Absolute Encoder Tums (MAXTURN)	$\begin{aligned} & 1 \text { to } 2^{31}-1 \\ & \text { (Initial value }=99,999 \text {) } \end{aligned}$	1=1 rotation
27	Positive Software Limit (SLIMP)	$\begin{aligned} & -2^{31} \text { to } 2^{31}-1 \\ & \text { (Initial value }=2^{31}-1 \text {) } \end{aligned}$	1=1 reference unit
29	Negative Software Limit (SLIMN)	$\begin{aligned} & -2^{31} \text { to } 2^{31}-1 \\ & \text { (Initial value }=-2^{3 i} \text {) } \end{aligned}$	1=1 reference unit
31	Zero Point Return Method (ZRETSEL)	$\begin{aligned} & 0 \text { to } 3 \\ & \text { (Initial value }=0 \text {) } \end{aligned}$	0 : DEC signal $+C$ signal 1: ZERO signal 2: DEC signal (with switch width) + ZERO signal 3. C pulse
$\begin{gathered} 32 \\ 1 \\ 38 \\ \hline \end{gathered}$	Reserved	-	-

5．1．2 List of Motion Setting Parameters

These parameters are used for reference to the motion module．At the beginning of high－speed scanning，the parameters are transferred to the motion module in a batch．Motion control can be performed by simply setting the parameters to this register area．

Note
No．of registers with a different module No．are not consecutive．
Register Nos．of the same module No．are consecutive between axes No． 1 and 8 and between axes No． 9 and 14，but those between axes No． 8 and 9 are not consecutive．
Those with the same module No．are consecutive between axes．
Therefore，care should be taken if a subscript (i, j) is used on a user program．
For details，refer to 5．1 List of Motion Parameters．

Table 5．2 List of Motion Setting Parameters

No．	Name	Register No．				Motion Command Code （OWLD20）					
				Setting range／ Bit name	Meaning	읃	号	c	c		
1	RUN Mode Settings （RUNMOD）	OW口口00									
		Bit	0	Reserved	Set＂0．＂						
			1	Reserved	Set＂0．＂						
			2	PCON （ ${ }^{\text {initial value }}=0$ ）	Position Control Mode	\bigcirc	\bigcirc	\bigcirc		$\bigcirc 0$	\bigcirc
			3 to 5	Reserved	Set＂0．＂	－					
			6	ACR （Initial value $=0$ ）	Alarm Clear 1：Alarm clear inquiry	Always valid					
			7	Reserved	Set＂0．＂	－					
			8	MCDSEL （ Initial value $=1$ ）	0 ：Motion command code（OW \square 20） invalid 1：Motion command code（OW $\square \square 20$ ） valid ＊Be sure to set it to＂1．＂	Always valid					
			9	ZRNDIR （Initial value $=0$ ）	Set the direction for returning to the zero point． 0 ：Reverse direction（position pulse in the deceleration direction） 1：Forward direction（position pulse in the acceleration direction）						
			10 to 15	Reserved	Set＂0．＂						

Table 5．2 List of Motion Setting Parameters（Cont＇d）

No．	Name	Register No．		Setting range／ Bit name	Meaning	Motion Command Code （OWDC20）		
				品				
2	RUN Command Settings （SVRUNCMD）	OW口】01						
		Bit	0 ．	RUN （ Initial value $=0$ ）	Servo ON（DOO）	Always valid		
			1 to 11	Reserved	Set ${ }^{\text {a }}$ ．＂${ }^{\text {a }}$	－		
			12	USE＿BUF （Initial value $=0$ ）	Position Reference Vaiue Selection 0 ：Position reference value is $O L \square \square$ 12. 1：Position reference value is position buffer	\bigcirc	$0 \sqrt{ } 0 \sqrt{ } \sqrt{ } \sqrt{ }$	
			13	SPDTYPE $\text { (Initial value }=0 \text {) }$	Speed Reference Value Selection 0 ：OL $][\square 22$ is valid for the rapid feed speed． 1： $\operatorname{OW} \square \square 15$ is valid for the rapid feed speed．	\bigcirc	$0 \sqrt{0} / \sqrt{0}$	
			14	XREFTYPE （Initial value $=0$ ）	Position Reference Type 0 ：Absolute position method for position reference（ $\mathrm{OL} \square \square 12$ ）． 1：Incremental addition method for position reference（OLDП12）．	O		
			15	Reserved	－－		－	
$\begin{aligned} & 3 \\ & 1 \\ & 6 \end{aligned}$	Reserved			-	Set＂0．＂		$\xrightarrow{-}$	
7	Machine Coordinate System Zero Point Offset Setting （ABSOFF）		$\square 06$	$\begin{aligned} & -2^{31} \text { to } 2^{31}-1 \\ & (\text { (nitial value }=0) \end{aligned}$	$1=1$ reference unit （ $1=1$ pulse for the pulse unit）		Always valid	
$\begin{gathered} 9 \\ 1 \\ 12 \end{gathered}$	Reserved		$\begin{aligned} & \square \square 08 \\ & \square \\ & \hline 0 \mathrm{OB} \end{aligned}$	${ }^{-}$	Set＂0．＂		－	
13	Linear Acceleration Time Constant （NACC）		$\square \square 0 \mathrm{C}$	$\begin{aligned} & 0 \text { to } 32767 \\ & \text { (Initial value }=0 \text {) } \end{aligned}$	$\begin{aligned} & 1=1 \mathrm{~ms} \\ & (300=0.300 \mathrm{~s}) \end{aligned}$		Valid when $\mathrm{OW} \square \square 20$ 10	
$\begin{gathered} 14 \\ 1 \\ 16 \end{gathered}$	Reserved		$\begin{aligned} & \text { VDIOD } \\ & \text { I } \\ & \text { V口OOF } \end{aligned}$	．－	Set＂0．＂		－＿Coman	
17	Position Loop Gain Setting（Kp）		$\square \square 10$	$\begin{aligned} & 0 \text { to } 32767 \\ & \text { (Initial value }=300) \end{aligned}$	$\begin{aligned} & 1=0.1 / \mathrm{s} \\ & (300=30.0) \end{aligned}$		$\begin{aligned} & \text { Valid when } O W \square \square 20 \\ & 15 \end{aligned}$	
18	Feed Forward Gain Setting（Kf）		$\square \square 11$	$\begin{aligned} & 0 \text { to } 200 \\ & \text { (Initial value }=0 \text {) } \end{aligned}$	$\begin{aligned} & 1=1 \% \\ & (10=10 \%) \end{aligned}$		$\begin{aligned} & \text { Valid when } O W \square \square 20 \\ & 16 \end{aligned}$	

Table 5.2 List of Motion Setting Parameters (Cont'd)

No.	Name	Register No.	Setting range/ Bit name	Meaning	Motion Command Code (OWロ[120)				
							或		
$\begin{array}{r}19 \\ \hline \\ \hline 21\end{array}$	Position Reference Setting (XREF) or Position Buffer Number \qquad	OL[D12	$\begin{array}{\|l} \hline-2^{31} \text { to } 2^{31}-1 \\ \text { (Initial value }=0 \text {) } \end{array}$	$1=1$ reference unit ($1=1$ pulse for the pulse unit) -For Position Reference Value Selection (OB $\square \square 01 \mathrm{C})=1$, the position buffer No. (1 to 256).	0	$0 \sqrt{ }$	O	\bigcirc	1
21	Filter Time Constant Setting (NNUM)	$\begin{aligned} & \text { OWGD14 } \\ & \text { (Initial value } \\ & =0 \text {) } \end{aligned}$	0 to 5100	(1) For Bit 4 to 7 of OWप] $\square 21$ equal to " 2 ", the S-curve (Movement Averaging) time constant $1=100$ us (2) For Bit 4 to 7 of OWโ] $\square 21$ equal to "1", the exponentia! acceleration/deceleration time constant $1=1 \mathrm{~ms}$	Valid when OW $\square \square 20=$ 12				
22	$\begin{aligned} & \text { Speed Reference } \\ & \text { Setting } \\ & \text { (NREF) } \end{aligned}$	OW[]15	$\begin{aligned} & 0 \text { to } 32767 \\ & \text { (Initial value }=0 \text {) } \end{aligned}$	```Valid when the speed reference value selection (\(\mathrm{OW} \square \square 01 \mathrm{D})=1\). 1=0.01\% (\(5000=50.00 \%\))```	\bigcirc	010	O	010	O
$\begin{gathered} 23 \\ 1 \\ 29 \\ \hline \end{gathered}$	Reserved		-	Set "0."	-				
30	$\begin{aligned} & \text { Speed Loop Gain } \\ & \text { Setting (Ku) } \\ & \hline \end{aligned}$	OWDC1D	$\begin{array}{\|l\|} \hline 1 \text { to } 20000 \\ \text { (Initial value }=400 \text {) } \\ \hline \end{array}$	$\begin{aligned} & \begin{array}{l} 1=0.1 \mathrm{~Hz} \\ (400=40.0 \mathrm{~Hz}) \end{array} \end{aligned}$	$\begin{aligned} & \text { Valid when } \mathrm{OW} \square \square 20= \\ & 14 \text {. } \end{aligned}$				
31	Reserved	OLDП1E	-- -	Set "0."					
33	Motion Command Code (MCMDCODE)	OWपП20	$\begin{aligned} & 0 \text { to } 65535 \\ & \text { (Initial value }=0 \text {) } \end{aligned}$	0:NOP No reference available 1: POSING Positioning 2: EX POSING External Positioning 3: ZRET Zero Point Return 4: INTERPOLATE Interpolation 5: ENDOF_INTERPOLATE Final Interpolation Segment (For motion functions) 6: LATCH Interpolation with Position Detection 7: FEED Constant Speed Feed 8:STEP Constant Step Feed 9: ZSET Zero Point Setting 10: ACC Changing the Linear Acceleration/deceleration Time Constant 11: Reserved 12: SCC Changing the Movement Averaging Time Constant	Always valid				

Table 5.2 List of Motion Setting Parameters (Cont'd)

Table 5.2 List of Motion Setting Parameters (Cont'd)

Table 5.2 List of Motion Setting Parameters (Cont'd)

5.1.3 List of Motion Monitoring Parameters

These parameters are used for the motion module to report. At the beginning of high-speed scanning, they are reported in a batch. Use them for application controls and for debugging user programs.

No. of registers with a different module No. are not consecutive.
Register Nos. of the same module No. are consecutive between axes No. 1 and 8 and between axes No. 9 and 14, but those between axes No. 8 and 9 are not consecutive.
Those with the same module No. are consecutive between axes.
Therefore, care should be taken if a subscript (i, j) is used on a user program.
For details, refer to 5.1 List of Motion Parameters.

Table 5.3 List of Motion Monitoring Parameters

Table 5.3 List of Motion Monitoring Parameters (Cont'd)

No.	Name	Register No.		Setting range/ Bit name	Meaning	Motion Command Code (OWD口20)						
							든 흥 은 로					
21	Motion Command Response Code (MCMDCODE)	IW $\square \square 14$ to 65535 			Motion command currently under execution (Details are the same as OW■प20.)	Always valid						
22	Motion Command Status (MCMDSTS)	$. \mathrm{IW} \square \square 15$										
		- Bit	0		BUSY	Command execution flag	\bigcirc	\bigcirc		\bigcirc		\bigcirc
			1	HOLDL	Command hold completion	0	0					
			2	DEN	Distribution completion	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	
			3	ZSET	Zero point setting completion	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	
			4	EX_LATCH	External positioning signal latch completion	7	\bigcirc			\bigcirc		
			5	FAlL	Command error end	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
			6	ZRNC	Zero point return completion status			\bigcirc				
			7 to 15	Reserved	-							
23	Number of Digits Below Decimal Monitor (DECNUMM)	IW	7]16	0 to 5	Set the number of digits to the right of the decimal point of reference (Example) For the number of digits to the right of the decimal point $=3$, mm : One reference unit $=0.001 \mathrm{~mm}$ deg: One reference unit $=0.001 \mathrm{deg}$ inch : One reference unit $=0.001$ inch This parameter and the Reference Unit Selection (motion fixed parameter No.17.) gives the minimum reference unit. However, the minimum unit of "pulse" is not affected by this parameter.		ays	valid				
24	Position Control	IW	$\square 17$									
	Status	Bit	0	MLKL	Machine lock ON	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	(POSSTS)		1	ZERO	Zero point position	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
			2	PSET2	Second INP completion (Interlocked with the issue completion)	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
${ }^{\circ}$			3	$\overline{A B S L D E}$	ABS system infinite-length position control data load completion		inite ntrol	$\begin{aligned} & \text { when } \\ & \text {-leng } \\ & \text { I dat: } \\ & \square 20 \end{aligned}$		$\begin{aligned} & \mathrm{s}) \\ & \mathrm{osi} \\ & \mathrm{dr} \\ & \mathrm{O} \end{aligned}$	yster tion eque N.	
			4.	TPRSE .	Preset request for number of POSMAX turns completed			$\begin{aligned} & \text { when } \\ & \text { num } \\ & \text { AXt } \\ & \text { SON } \end{aligned}$	n req mber turn	que of s (O	for B	
			5	GEARM	Electric Gear Selection 0 : Invalid 1: Valid	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	- .		6	MODSELM	Axis Selection 0 : Finite-length axis 1: Infinite-length axis	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
			7 to 11	Reserved	- -				-			
		.	12 to 15	USRMONLR	Electric Gear Selection 0 : Invalid 1: Valid	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	

Table 5．3 List of Motion Monitoring Parameters（Cont＇d）

No．	Name	Register No．	Setting range／ Bit name	Meaning	Motion Command Code （OWD［20）						
					읓		E	－	竒	矿	
25	Machine Coordinate Reference Position （MPOS） Reserved	ILロП18	-2^{31} to $2^{3 t}-1$	1＝1 reference unit For units of pulse，1＝1 pulse． Updating not to be performed during machine lock．	Always valid						
27	Reserved	ILD口1A	$12^{3 T}$	－1－－	－						
29	POSMAX Monitor （PMAXTURN）	ILD口1C	1 to $2^{3 T}-1$	1＝1 reference unit Set the number of digits to the right of the decimal point of reference （Example）For the number of digits to the right of the decimal point $=3$ ， mm ：One reference unit $=0.001 \mathrm{~mm}$ deg ：One reference unit $=0.001 \mathrm{deg}$ inch：One reference unit $=0.001$ inch This parameter and the Reference Unit Selection（motion fixed parameter No．17．） gives the minimum reference unit．However， the minimum unit of＂pulse＂is not affected by this parameter．	Always valid						
$\begin{array}{r}31 \\ \hline 33\end{array}$	\qquad	ILD］1E	-2^{31} to $2^{31}-1$ 2^{31} to $2^{31}-1$	1＝1 rotation Counted up or down every time the number exceeds POSMAX．（To be initialized to＂ 0 ＂at turning power ON．）	Valid when＂infinite－ length axis＂is selected by fixed parameter No． 17.						
33	Servo Driver User Monitor Information （USRMON）	IL $\square \square 120$	-2^{37} to $2^{37}-1$	Refer to the servo driver manual．	Always valid						
35	Alarms （ALARM）	IL丁口22			Always valid						
		Bit 0	SVERROR	SERVOPACK error							
		1	OTF	Positive overtravel							
		2	OTR	Negative overtravel							
		3	SOTF	Positive software limit							
		4	SOTR	Negative software limit							
		$\begin{array}{r}5 \\ \\ \hline\end{array}$	SVOFF	Servo OFF （The move command is issued when SVCRUN is OFF．）							
		6	TIMEOVER	Positioning time over							
		7	DISTOVER	Positioning travel distance over							
		8	FILTYPERR	Filter type change error							
		9	FILTIMERR	Filter time constant change error							
		10	MODERR	Control mode error （The move command has been issued except for the position control mode．）							
		$\frac{11}{12 \cdot 13}$	ZSETNRDY	Zero point not set							
		12，13	Reserved	－－－							
		14	WOT＿ERR	Servo driver synchronous communication error							
		15	COM ERR	Servo driver communication error							
		16	SVTIMOVT	Servo driver command timeout error							
		17	ABSOVER	ABS encoder count exceeded							
		18 to 31	Reserved	－－－－							
37 88	Servo Driver ALARM Code （SVALARM）	IW $\square \square 24$	－	Refer to the servo driver manual．	Always valid						
38	Servo Driver I／O Monitor （SVIOMON）	IWप】25	－	Refer to the servo driver manual．	Always valid						
39	Speed Reference Output Monitor （RVMON）	ILD］［26	1 to $2^{31}-1$	1＝1 reference unit／s （for system use）	Always valid						

Table 5.3 List of Motion Monitoring Parameters (Cont'd)

5.2 Details of Motion Parameters

5.2.1 Details of Motion Fixed Parameters

|

Note

Fixed parameters cannot be changed when the current value of Bit 0 of motion setting parameter No. 2 "RUN Command Setting (OW $\square \square 01$)" is ON.
Be aware that if any motion fixed parameter is changed, position information, etc., will be initialized.

Table 5.4 Details of Motion Fixed Parameters

No.	Name	Description	Initial value
1	Axis Use Selection (USESEL)	Designate either "not to use $(=0)^{\prime \prime}$ " "to use $(=1)^{\prime \prime}$ the relevant axis. Selecting "Not used" will result in no control of the axis. And also, the motion monitoring parameters (IW $\square \square 00$ to IW $\square \square 3$ 3F) are not updated. However, "0" is stored to the running status (IW $\square \square 00$). When no axis is used, select "Not used" in order to shorten the processing time. The initial value for this is set to "Not used $(=0)$." However, be sure to set the pulse output maximum frequency even when no axis is used.	0 (Not used)
3	Encoder Selection (ENCSEL)	Designate the pulse encoder type: incremental encoder $(=0)$, absolute encoder $(=1)$ or absolute encoder of incremental type (=2). The initial value is "incremental encoder" $(=0)$.	0 (Incremental encoder)
5	Pulse Counting Mode Selection (PULMODE)	Designate the pulse counting method. There are three pulse counting methods as follows. Designate corresponding to the machine in use (pulse taking method). - AB pulse method multipfied by $1(=4)$ * A/B pulse method multiplied by $2(=5)$ * AB pulse method multiplied by $4(=6)$ The initial value is "A/B pulse method multiplied by 4 " (=6).	6 (AB $\times 4$)
7	Rated Motor Speed Setting (NR)	Set the number of rotations at the rated (100%) rotation in units of $1 \mathrm{r} / \mathrm{min}$. Set corresponding to the machine in use (motor specifications). The initial value is $3000 \mathrm{r} / \mathrm{min}$.	3000
8	Number of Feedback Pulses per Rotation (FBppr)	Set the number of feedback pulses per motor rotation. Set a multiple of 4 within the range between 4 and 65532 (P/R). Set corresponding to the machine in use (encoder specifications). The initial value is $2048 \mathrm{P} / \mathrm{R}(=2048)$.	2048
16	Simulation Mode Selection (SIMULLATE)	Designate the running mode. If "simulation mode" is selected, simulated values are reported to the motion monitoring parameters (position monitor, etc) without actually connecting with the servo driver. Use it for debugging application programs. The initial value is "normal operation mode" $(=0)$.	0 (Nomal operation)

Table 5.4 Details of Motion Fixed Parameters (Cont'd)

Table 5.4 Details of Motion Fixed Parameters (Cont'd)

No.	Name	Description	Initial value
18	Digits Below Decimal Point (DECNUM)	Set the number of digits to the right of the decimal point of the reference unit to be input. This setting and the setting of selection for the reference unit (Bit 0 to 3 of the Motion Controller Function Selection Flags) will give a minimum reference unit by which this module can be referenced. Also refer to 3.1 (1) "Reference unit."	3
19	Travel Distance per Machine Rotation (PITCH)	This is a parameter which represents the amount of load movement per rotation of the load axis. Set the value of the amount of load movement divided by the reference unit. Refer to 3.1 (2) "Electronic gear" for details. Setting the Electronic gear selection (Bit 4 of the Motion Controller Function Selection Flags) to invalid will make it invalid. In this case, set the initial value.	10000
21	Servomotor Gear Ratio (GEAR MOTOR)	This is a parameter to set the gear ratio between the motor and load. Set the gear ratio on the motor side to this parameter in the unit of per rotation. Setting the Electronic gear selection (Bit 4 of the Motion Controller Function Selection Flags) to invalid will make it invalid. In this case, set the initial value.	1
22	Machine Gear Ratio (GEAR MACHINE)	This is a parameter to set the gear ratio between the motor and load. Set the gear ratio on the load side to this parameter in the unit of per rotation. Setting the Electronic gear selection (Bit 4 of the Motion Controller Function Selection Flags) to invalid will make it invalid. In this case, set the initial value.	1
23	Infinite-length Axis Reset Position (POSMAX)	Setting the axis selection (Bit 5 of the Motion Controller Function Selection Flags) to the infinite-length axis requires the setting of the reset position for per rotation. Setting it to the finite-length axis will make it invalid. In this case, set the initial value. Also refer to 3.1 (3) "Axis selection."	360000
25	Maximum Number of Absolute Encoder Turns (MAXTURN)	When using the absolute encoder, set its maximum amount of turn. Refer to the SERVOPACK manuai.	99999
27	Positive Software Limit (SLIMP)	Setting the positive software limit selection (Bit 7 of the Motion Controller Function Selection Flags) is set to valid, set the positive software limit value. Setting it to invalid will make it invalid. In this case, set the initial value. When this bit is set to valid ($=1$) and when zero point return has been accomplished (the zero point retum completion status, $\mathrm{IB} \square \square 156$, of the motion monitoring parameter is "ON"), the software limit function is valid. This selection is invalid when the axis selection (Bit 5 of the Motion Controller Function Selection Flags) is set to the infinite-length axis $(=1)$. In this case set it to invalid $(=0)$.	$2^{3!}-1$
29	Negative Software Limit (SLIMN)	Setting the negative software limit selection (Bit 8 of the Motion Controller Function Selection Flags) is set to valid, set the negative software limit value. Setting it to invalid will make it invalid. In this case, set the initial value. When this bit is set to valid (=1) and when zero point return has been accomplished (the zero point retum completion status, $\mathrm{IB} \square \square \square 156$, of the motion monitoring parameter is "ON"), the software limit function is valid. This selection is invalid when the axis selection (Bit 5 of the Motion Controller Function Selection Flags) is set to the infinite-length axis $(=1)$. In this case set it to invalid $(=0)$.	-2^{31}
31	Zero Point Return Method (ZRETSEL)	Set the zero point return method on zero point retum. Refer to 3.4, "Zero Point Return" for details.	$\begin{aligned} & \text { 2(DEC+ZERO } \\ & \text { signal) } \end{aligned}$
32	Reserved	-	0

5.2.2 Details of Motion Setting. Parameters

Note
No. of registers with a different module No. are not consecutive.
Register Nos. of the same module No. are consecutive between axes No. 1 and 8 and between axe No. 9 and 14, but those between axes No. 8 and 9 are not consecutive.
Those with the same module No. are consecutive between axes.
Therefore, care should be taken if a subscript (i, j) is used on a user program.
For details, refer to 5.1 List of Motion Parameters.

Table 5.5 Details of Motion Setting Parameters

No.	Name	Register No.		Setting range/ Bit name	Description	initial value
1	RUN Mode Settings (RUNMOD)	$\text { OW } \square \square 00$		Set the running mode such as control mode or alarm reset. The running mode is made up of bits. The configuration of the bits are shown below.		
			0	Reserved	Set "0."	0
			1	Reserved	Set "0."	0
			2	Position Control Mode (PCON)	Set the position control mode.	1 (Used)
			3 to 5	Reserved	Set "0."	0
			6	Alamn Clear (ACR)	The rise of this bit will clear ($=0$) error information. The following items are to be cleared: (1) Motion Setting Parameter Setting Error (Bit 1 of IW $\square[100$ RUN Status) (2) Alarm (II $\square \square 22$)	0
		Bit	7	Reserved	Set "O."	0
			8	Motion Command Code Use Selection (MCDSEL)	Set whether used or not to use the Motion Command Code (OW $\square \square \square 20$). Be sure to set "1" for this module.	1 (Used)
			9	Zero Point Return Direction Selection (ZRNDIR)	Set the direction for zero point return on Zero Point Return (DEC + ZERO signal). 0 : Returns to zero point in the negative direction (in the direction of position pulses to be reduced). 1: Returns to zero point in the positive direction (in the direction of position pulses to be increased). Also refer to 3.4, "Zero Point Return."	0
			10 to 15	Reserved	Set "0,"	0

Table 5.5 Details of Motion Setting Parameters (Cont'd)

No.	- Name	Register No.		Setting range/ Bit name	Description	Initial value
2	RUN Command Settings (SVRUNCMD)	OW口П01		Set the output signal from this module to the pulse motor driver and the running mode necessary for motion control. The RUN command is made up of bits. The configuration of the bits are shown below.		0
		Bit	0	Servo ON (RUN)	Used for Servo ON signal of the servo driver.	0
			1 to 11	Reserved	Set "0."	0
			12	Position Reference Value Selection (USE_BUF)	Select the reference method for the position reference data. 0: Represents that the position reference data are those of OL $\square \square$ 12. The position reference data is set to OL $\square \square 12$. 1: Represents that the position reference data are position buffers. The position buffer No. is set to OL $\square \square 12$. At this time, the position data is required to have been set to the designated position buffer No. Refer to 3.1 (4) "Position references" for details.	0
			13 4.	Speed Reference Value Selection (SPDTYPE)	Select the register No. and unit of speed reference value of the feed speed. 0 : Set the rapid feed speed to OL $\square \square 22$. 1: Set the rapid feed speed to OW $\square \square 15$. Refer to 3.1 (6) "Speed references" for details.	0
			4	Position Reference Type (XREFTYPE)	Select the data type of the position reference data. 0 : The position reference (OL $\square \square 12$) follows the absolute position method. 1: The position reference (OLD \square 12) follows the increment addition method. Refer to 3.1 (4) "Position references" for details.	0
			15	Reserved	Set "0."	0
$\begin{aligned} & 3 \\ & 1 \\ & 6 \end{aligned}$	Reserved			-	Set "0."	0
7	Machine Coordinate System Zero Point Offset Setting (ABSOFF)		$\square 06$	-2^{31} to $2^{31}-1$	The position information can be offset only by means of the setting value of this register. This is valid even during RUN, however, use it when RUN is OFF. This register accommodates data which constitutes the position control performed by this module. Any incorrect setting to this register will affect subsequent movement operation so that care must be taken when used. Be sure to check whether correct data have been set or not before running. Failure to check it may lead to tool damage due to interference and possible accidents.	0
$\begin{gathered} 9 \\ 1 \\ 12 \end{gathered}$	Reserved		$\begin{aligned} & \square] 08 \\ & \hline \square] 0 \mathrm{~B} \end{aligned}$	${ }^{-}$	Set "0."	0
13	Linear Acceleration Time Constant (NACC)	OW	$\square 1700$	0 to 32767	Set the linear acceleration time. Set the acceleration time to reach from 0% to 100% (the rated rotation speed). The data set here is reflected in the SERVOPACK Cn constant "Second Linear Acceleration/deceleration Time Constant (Cn-0020)" when the Motion Command Code (OW $\square \square 20)=10$.	0
14 1 16	Reserved		$\begin{aligned} & \square O D \\ & \square O F \end{aligned}$	-	Set "0."	0

Table 5．5 Details of Motion Setting Parameters（Cont＇d）

No．	Name	Register No．	Setting range／ Bit name	Description	initial value
17	Position Loop Gain Setting （Kp）	OW $\square \square 10$	$0 \text { to } 5000$	Set the position loop gain in the servo system． Position loop gain is needed to set response performance for the servo system． The following are setting guidelines． Set an appropriate value for the machine rigidity． inertia，and type of Servomotor． The data set here is reflected in the SERVOPACK Cn constant＂Position Loop Gain（Cr－001A）＂when the Motion Command Code（OW $\square \square 20$ ）$=15$.	300（30．0）
18	Feed Fonward Gain Setting （Kf）	$\text { OW } \square \square 11$	$0 \text { to } 200$	Reduces positioning time by applying feed forward control． Reference position and actual position error decrease with higher settings． The machine may start to vibrate if the setting is too high． The data set here is reflected on the SERVOPACK Cn constant＂Feed Forward Gain（Cn－001D）＂when the Motion Command Code（OW $\square \square 20)=16$.	0
19	Position Reference Setting （XREF）or Position Buffer Number	OL［］ 12	-2^{31} to $2^{31}-1$	Set the position reference value． Care should be taken because the setting data will bear a different meaning according to the Position Reference Value Selection（OB $\square \square 00 \mathrm{C}$ ）and Position Reference Type（OB $\square \square 00 \mathrm{E}$ ）． Refer to 3.1 （4）＂Position references．＂	0
21	Filter Time Constant （NNUM）	OW $\square \square 14$	（1） When the movement averaging filter is used， 0 to 5100 （ $0=1=$ without filter）． （2） Exponential acceleration／ deceleration 0 to 65535	Set the time constant to use the movement averaging filter or the exponential acceleration／deceleration filter． Set the type of the filter by the Filter Type Selection（Bit 4 to 7 of OW $\square \square 21$ ）． The data set here is reflected in the following when the Motion Command Code（OW［］，［120）$=12$. （i）SERVOPACK Cn constant＂Average move time（Cn－ 0026 ）＂when bit 4 to 7 of OW $\square \square 21=2$（movement averaging filter）． （ii）SERVOPACK Cn constant＂Exponential acceleration／deceleration time constant（Cn－002E）${ }^{n}$ when bit 4 to 7 of OW $\square \square 21=1$（exponential filter）．	0
22	Speed Reference Setting （NREF）	OW $\square \square 115$	0 to 32767	When the Speed Reference Value Selection（OB［］D 01D）is set to＂ $1^{\prime \prime}$ ，set the rapid feed speed in the unit of 0.01%（the proportion against the rated rotation speed）． Also refer to 3.1 （6）＂Speed references．＂	0
$\begin{gathered} 23 \\ 1 \\ 29 \end{gathered}$	Reserved		－	Set＂0．＂	0
30	Speed Loop Gäin Setting （Kv）	OW口ロ1D	1 to 20000	Set the proportional gain of the speed loop． The data set here is reflected in the SERVOPACK Cn constant＂Speed loop gain（Cn－0004）＂when the Motion Command Code（OW $\square \square 20$ ）$=14$ ．	400
31	Reserved	OLD口1E	－	Set＂0．＂	0

Table 5.5 Details of Motion Setting Parameters (Cont'd)

No.	Name	Register No.		Setting range/ Bit name	Description	Initial value
33	Motion Command Code (MCMDCODE)	OW $\square \square 120$		0 to 65535	Set the motion function (such as move command) to be used. The motion functions available are Positioning (POSING), External positioning (EX_POSING), Zero point return (ZRET), interpolation (INTERPOLATE), Constant speed feed (FEED), and Constant step feed (STEP). The final interpolation segment (ENDOF_INTERPOLATE) is intended for motion functions which are not needed. Setting the move command by this register when SVCRN (IBD■008) is "OFF" will result in an alarm. Refer to 3.2, "Positioning" through 3.9, "Zero Point Setting" for details.	0
34	Motion Command Control Flags (MCMDTRL)	$\text { OW } \square \square 21$		Set a supplementary function of the motion command.		0
		OWD Bit 0		Command Hold (HOLD)	Valid when the motion command (OW $\square \square 20$) is at the positioning and constant step feed. When this bit is turned ON during the axis movement, the axis is decelerated to stop. On completing the suspension, the hold completion (IB \square 151) is tumed "ON." When this bit is tumed back to "OFF" in this condition, the suspension is released to restart the positioning operation. Refer to the relevant item of each motion function for suspension.	0
			1	Command Abort (ABORT)	Valid when the motion command (OW $\square \square 20$) is at the Positioning, Zero point return, and Constant step feed. When this bit is turned ON during the axis movement, the axis is decelerated to stop BUSY (IB $\square \square 150$) is tumed "ON" during abort and tumed "OFF" at the time of completing abort. Refer to the relevant item of each motion function for abort. To abort the constant speed feed, set the motion command to NOP to allow for the same function.	0
			2	Direction of Movement (DIRECTION)	Valid when the motion command (OW $\square \square 20$) is at Constant speed feed and Constant step feed. Designate the direction of movernent. 0 : Forward direction 1: Reverse direction	0
			3	Speed Loop P/PI Switch (P_PI)	Designate the Speed loop control method 0: Pl control 1: P control	0
			4 to 7	Filter Type Selection (FILTERTYPE)	Set the type of the acceleration/deceleration filter. 0 : No filter available 1: Exponential acceleration/deceleration filter 2: Movement averaging filter Setting "1" or "2" will make the filter time constant (OW $\square \square$ 14) valid. The data set here is valid when the motion command code (OWC $\square \square 20)=13$.	0
			8 to 11	Reserved	Set "0."	0

Table 5.5 Details of Motion Setting Parameters (Cont'd)

No.	Name	Register No.		Setting range/ Bit name	Description	Initial value
34	Motion Command Control Flags (MCMDTRL)	Bit	14 ..	Position Buffer Write (BUF_W)	By turning ON this bit, the data set to the Position Buffer Write Data (OL $\square \square 3 A$) is stored in the position buffer set by the position buffer access No. (OLD \square 38) as absolute position data. Also refer to 3.1 (4) "Position references."	0
			15	Position Buffer Read (BUF_R)	By turning ON this bit, the data set by the Position Buffer Access No. (OL $\square \square 38$) is read and stored in the Position Buffer Read Data (OL $\square \square 28$). Use it for checking the position stored in the position buffer. It should be noted that it takes 2 scans from the issue of the read command (this bit is turned "ON") until the data is stored at the Position Buffer Read Data (ILD \square 28). Also refer to 3.1 (4) "Position references."	0
35	Rapid Feed Speed (RV)	OL	722	$0 \text { to } 2^{31}-1$	When the Speed Reference Value Selection (OBD 01D) is set to " 0 ", this bit allows for setting the rapid feed speed in 10 n reference unit / min (n : the number of digits below decimal point). For each setting unit, For units of pulse : $1=1000$ pulse $/ \mathrm{min}$ For units of $\mathrm{mm}: 1=1 \mathrm{~mm} / \mathrm{min}$ For units of deg : $1=1 \mathrm{deg} / \mathrm{min}$ For units of inch : $1=1$ inch/min	0
37	External Positioning Travel Distance (EXMDIST)			-2^{31} to $2^{31}-1$	Set the stopping distance after input of the LATCH signal (external positioning signal) in the Extemal positioning (EX_POSING) mode. The unit should correspond to that of the SERVOPACK.	0
39	Stopping Distance (STOPDIST)			-2^{31} to $2^{31}-1$	This parameter is used by the system. Do not use it.	0
41	STEP Travel Distance (STEP)		728	0 to $2^{3!}-1$	Valid when the motion command (OW $\square \square 20)$ is at the constant step feed. Set the amount of movement in the 1 reference unit. Refer to 3.1 (1) "Reference unit" for the reference unit.	0
43	Reserved		$\square 2 \mathrm{C}$	-	Set "0." . ${ }^{\text {\% }}$	0
45	$\begin{aligned} & \text { Override } \\ & \text { (OV) } \end{aligned}$		$\text { I] } 2 \mathrm{C}$	0 to 32767 -	An override value is set when the Override Selection (Bit 9 of the Motion Controller Function Selection Flags) of the motion fixed parameter is set to "Valid." "Override" means changing and using the setting value of feed speed. For example, the speed reference setting is multiplied ($100 \%=1.0$) by the value set by this register to take this result as the speed'reference.	10000

Table 5.5 Details of Motion Setting Parameters (Cont'd)

No.	Name	Register No.		Setting range/ Bit name		Description	Initial value
46	Position Control Flags (POSCTRL)	OW $] \square 2 \mathrm{D}$		Selects a function related to the position information controlled by this module. Made up of bits. The bit configuration is as shown below.			
		Bit	0	Machine Lock Mode Setting (MLK)	The motion command is executed as usual and the Calculated Position in Machine Coordinate System (IL $\square[702$) is updated, however, this is a mode where the actual control axis is locked and disabled to move. This bit becomes valid after the completion of issuing (IB $\square \square 152$ is tumed "ON") when it is changed.		0
			1	Request for Preset Number of POSMAX Turns (TPRSREQ)	Turning "ON" this bit will allow for presetting the number of POSMAX tums (ILD $\square 1 E$) using the data set by the Preset Number of POSMAX Turns Data (OL $\square \square 30$). Use this bit to reset to " 0 ."		0
			2	ABS System Infinite-length Position Control Data Load Request (ABSLDREQ)	This is valid when the motion fixed parameter "Encoder selection" is set to "absolute encoder" (= 1) and the motion fixed parameter "Axis selection" (Bit 5 of the Motion Controller Function Selection Flags) is set to "infinite-length axis" (=1). By tuming ON this bit, the position information that is controlled by this module is updated according to the data set to the Encoder Position at Shutdown (OLD] 38, OL \square 3A) and the Pulse Position at Shutdown (OL $\square \square 3 C, O L \square \square 3 E)$.		0
			3 to 11		Set "0." By designating this parameter, the foll		0
			12 to 15	Servo Driver User Monitoring Information Selection (USRMONSEL)	By designating this parameter, the following position information in the MECHATROLINK servo can be monitored. The information is monitored to ILCIC $] 20$.		-
						Description	
					0	Reference position on the reference coordinate system	
					1	Machine reference position in the machine coordinate system	
					2	Position error	
					3	Feedback position in the machine coordinate system	
					4	Counter latch position in the machine coordinate system	
					5	Internal reference position in the reference coordinate system	
					6	Intemal reference position in the reference coordinate system	
					7	-	
					8	Feedback speed	
					9	Reference speed	
					A	Final target reference position	
					8	Torque reference	
					C	- -	
					D	-	
					E	Optional monitor 1	
					F	Optional monitor 2	

Table 5．5 Details of Motion Setting Parameters（Cont＇d）

No．	Name	Register No．	Setting range／	Description	Initial value
47	Workpiece Coordinate System Offset （OFFSET）	OLCLIE	-2^{31} to $2^{34}-1$	Set＂ 0 ＂as the initial value．	${ }^{0}$
49	Preset Number of POSMAX Tums Data （TURNPRS）	OLIT］30	2^{33} to $2^{33}-1$	Turning＂ON＂the preset request for the Number of POSMAX Turns（OB $\square \square 2 D 1$ ）allows for presetting the Number of POSMAX Tums（ILD（—1E）using the data set by this register． Used also for resetting to＂ 0 ．＂	0
51	Second In position Width （INPWIDTH）	OwDI32	0 to 65535	Set the range where the second INP completion（Bit 2 of IW $\square \square 17$ ）is turned ON． When issuing is completed（IB $\square \square 152$ is $O N$ ）and $0 \leq$ ｜current position（ILD $\square 08$ ）－reference position on the machine coordinate system（LD—08）｜\leq second in－ position width（OW $\square \square 32$ ），the second INP completion （ BB 밈 172）is tumed ON．	0
52	Zero Point $\left.\begin{array}{l}\text { Position Output } \\ \text { Width } \\ \text {（PRETWIDTH）}\end{array}\right)$	0WПロ33	01065535	Set the range of zero point position． When $0 \leqq$ set position in the machine coordinate system（IL［］［］18）\leqq zero point position output width and the zero point retum status（IBCD156）is ON ，the zero point position（IB $\square \square 171$ ）is tumed ON ．	10
53	Positioning Completion Check Time （PSETTIMB）	OWपロ34	0 to 65535	Set the threshold value to detect the positioning time over（Bit 6 of $\operatorname{lL} \square \square 22$ ）（ $1=1 \mathrm{~ms}$ ）． After issuing is completed（Bit 2 of IW $\square \square 15$ is tumed ON ），if the positioning completion signal（Bit 13 of IW \square $\square 00$ ）is not tumed $O N$ even with this range exceeded， the alarm＂Positioning time over＂is given． If＂ 0 ＂is set，this check is not performed． Set＂ 0 ＂if detection of the positioning time over is not wanted．	${ }_{0}$
54	Servo Driver Cn Constant No． （Cn＿NO）or Current Servo Driver Alarm Monitor No．or Servo Driver Alarm History Monitor No	OwDロ35	0 to 65535	There are three ways to use as follows： （1）Servo driver Cn constant No．（Cn＿NO） This is valid when the motion command（OW［I［J20） is CN＿RD（ $=17$ ）or CN＿WR $(=18)$ ． Bit 0 to 11：Cn constant No． Bit 12 to 15：number of words （2）Servo driver current alarm monitor No．designation This is valid when the motion command（OW［］［］20） is ALM＿MON $(=19)$ ． Designate within the range between 0 and 5 ． The alarm code of the designated monitor No．is monitored to $\mathrm{IW} \square \square 24$. （3）Servo driver alarm history monitor No．designation This is valid when the motion command（OWDC［20） is ALMHIST＿MON $(=20)$ ． Designate within the range between 0 and 9 ． The alarm code of the designated monitor No．is monitored to $\mathrm{WW} \square \square 24$.	0
55	$\begin{aligned} & \text { Cn Constant } \\ & \text { Change Data } \end{aligned}$	OLD］36	-2^{31} to $2^{31}-1$	This is valid when the motion command（OW［प20）is $C N W R(=18)$ ．	0

Table 5.5 Details of Motion Setting Parameters (Cont'd)

No.	Name	Register No.	Setting rangel Bit name	Description	Initial value
57	Lower-place Two Words of Encoder Position at Shutdown or Position Buffer Access No.	OLD[738	$-2^{\text {4 }}$ to 2^{3+1}	Be aware that there are two ways to use as follows: (1) Lower-place Two Words of Encoder Position at Shutdown This is valid when the motion fixed parameter "Encoder selection" is set to "absolute encoder" (=1) and the motion fixed parameter "Axis selection" (Bit 5 of the Motion Controller Function Selection Flags) is set to "infinite-length axis" $(=1)$. When the request to load the ABS System Infinitelength Position Control Data Load Request (Bit 2 of OW $\square \square 2 \mathrm{D}$) is ON, the data set to this parameter is handled as the Lower-place Two Words of Encoder Position at Shutdown. (2) Position Buffer Access No. Set the No. of the position buffer to be accessed when the Position Buffer Write (Bit 14 of OW $\square \square 21$) is ON or when the Position Buffer Read (Bit 15 of OWD[-21) is ON.	0
59	Upper-place Two Words of Encoder Position at Shutdown or Position Buffer Write Data	OLDС]A	-2^{31} to $2^{31}-1$	Be aware that there are two ways to use as follows: (1) Upper-place Two Words of Encoder Position at Shutdown This is valid when the motion fixed parameter "Encoder selection" is set to "absolute encoder" ($=1$) and the motion fixed parameter "Axis Selection" (Bit 5 of the Motion Controller Function Selection Flags) is set to "infinite-length axis" $(=3)$. When the ABS System Infinite-length Position Control Data Load Request (Bit 2 of OW $\square \square 2 \mathrm{D}$) is ON, the data set to this parameter is handled as the Upper-place Two Words of Encoder Position at Shutdown. (2) Position Buffer Write Data When the Position Buffer Write (Bit 14 of OW $\square \square$ 21) is ON, the data set to this parameter is written in the position buffer designated by $\mathrm{OL} \square \square 38$ as absolute position data.	0
61	Lower-place Two Words of Pulse Position at Shutdown	OL[]L]3C	-2^{31} to $2^{31}-1$	This is valid when the motion fixed parameter "Encoder selection" is set to "absolute encoder" ($=1$) and the motion fixed parameter "Axis Selection" (Bit 5 of the Motion Controller Function Selection Flags) is set to "infinite-length axis" $(=1)$. When the ABS System Infinite-length Position Control Data Load Request (Bit 2 of OW $\square \square 2 \mathrm{D}$) is ON, the data set to this parameter is handled as the Lower-place Two Words of Pulse Position at Shutdown.	0
63	Higher-place Two Words of Pulse Position at Shutdown	OLDП3E	-2^{31} to $2^{31}-1$	This is valid when the motion fixed parameter "Encoder selection" is set to "absolute encoder" $(=1)$ and the motion fixed parameter "Axis Selection" (Bit 5 of the Motion Controlier Function Selection Flags) is set to "infinite-length axis" (=1). When the ABS System Infinite-length Position Control Data Load Request (Bit 2 of OW[]—2D) is ON, the data set to this parameter is handled as the Upper-place Two Words of Pulse Position at Shutdown.	0

5.2.3 Details of Motion Monitoring Parameters

Note

No. of registers with a different module No. are not consecutive.
Register Nos. of the same module No. are consecutive between axes No. 1 and 8 and between axi No. 9 and 14, but those between axes No. 8 and 9 are not consecutive.
Those with the same modile No. are consecutive between axes.
Therefore, care should be taken if a subscript (i, j) is used on a user program.
For details, refer to 5.1 List of Motion Parameters.

Table 5.6 Details of Motion Monitoring Parameters

No.	Name	Register No.		Setting range/ Bit name	Description
1	RUN Status (RUNSTS)	IW $\square \square 00$		Reports the running status of the module. Made up of bits. The bit configuration is shown below.	
		Bit	0	Reserved	__-_ _-_ _-_
			1	Motion Setting Parameter Setting Error (PRMERR)	In setting the motion setting parameters (OW $\square \square 00$ to $O W \square \square 3 F$), this bit is turned ON when setting is performed beyond the setting. range. The latest motion setting parameter No. which has caused the range over error is reported to the range over occurrence parameter No. (IV $\square \square \mathrm{OF}$).
			2	Motion Fixed Parameter Setting Error (FPRMERR)	In setting the motion fixed parameters (OW $\square \square 00$ to OW $\square \square 3 F$), ti bit is turned ON when setting is performed beyond the setting range. The latest motion fixed parameter No. which has caused the ran over error is reported to the range over occurrence parameter No. (1 $\square \square 0 F)$. This bit is automatically tumed OFF when a proper motion fixed parameter is set from CP-717.
			3 to 6	Reserved	P-3
			7	Motion Controlier RUN Ready (SVCRDY)	The module is turned ON at the completion of running preparation. This bit is tumed "OFF" (1) when a serious failure has occurred, (2) when the axis has been selected for no use (motion fixed parameter setting). (3) when an error has occurred in a motion fixed parameter setting, and (4) while the motion fixed parameter is being changed.
			8	Motion Controller RUN (SVCRUN)	This bit is turned "ON" when the above SVCRDY (IB $\square \square 007$) is "ON in the position control mode ($\mathrm{OB} \square \square 002$ is "ON") and the Servo-ON ($\mathrm{OB} \square \square 010$) is "ON" (at the rise). When an alarm is on with this bit "ON", the axis will not move even when a motion command is issued. in this case, clear the alarm and then set the motion command to NOP to reset the motion command.
			9 to 12	Reserved	-
			13	Positioning Completion Signal (POSCOMP)	This bit is tumed "ON" on completion of positioning.
			14, 15	Reserved	-

Table 5.6 Details of Motion Monitoring Parameters (Cont'd)

No.	Name		Register No.	Setting range/ Bit name	Description
2	$\begin{aligned} & \text { Servo Driver } \\ & \text { Status } \\ & \text { (SVSTS) } \end{aligned}$		V $\square \square 01$	0 to 65535	Monitors the status of the MECHATROLINK servo. For details, refer to the Σ Series SGM[]/SGD- \square N User's Manual (SIE-S800-26.2). When monitoring this parameter, take delays in communication into consideration.
3	Calculated Position in Machine Coordinate System (CPOS)		$\square \square 02$	-2^{31} to $2^{31}-1$	The Calculated position in the reference coordinate system which the module controls is reported. The position data to be reported to this register becomes usually the target position for every scan. Also refer to 3.1 (5) "Position monítoring."
5	Reserved		$\square \square 04$	-	-
7	Machine Coordinate System Latch Position (LPOS)		$\square \square 06$	-2^{31} to $2^{31}-1$	The latch position in the machine coordinate system that is controlled by this module is reported. This is updated upon completion of latch by execution of external positioning or interpolation with the position detecting function.
9	Machine Coordinate System Feedback Position (LPOS)		$\square \square 08$	-2^{37} to $2^{31}-1$	The feedback position in the machine coordinate system that is controlled by this module is reported.
11 1 15	Reserved			-	-
16	Out of Range Parameter Number (ERNO)		$\square \square \mathrm{OF}$	(1) For the motion setting parameter 1 to 64 (2) For the motion fixed parameter 101 to 148	In the setting of the motion setting parameters (OWD $\square \square 00$ to OW $\square \square$ 3F) or motion fixed parameters, the latest parameter No. which has been set beyond the setting range is reported. When a setting range over error has been detected in the setting of the motion setting parameters (OW $\square \square 00$ to $O W \square \square 3 F$), 1 to 64 is reported as parameter No. When range over error has been detected in the setting of the motion fixed parameters, the motion fixed parameter No. added by 100 (101 to 148) is reported as a parameter No. For example, when a setting range over error has been detected in setting the linear acceleration time constant (OWD $\square \square 0 \mathrm{C}$), 00013 is to be reported. When a setting range over error has been detected in the number of rated rotation (a motion fixed parameter), 00107 is to be reported. (Note) This is valid when the motion setting parameter setting error (IB \square \square 001), or motion fixed parameter setting error (IB $\square \square] 002$) occurs. * For the causes of error occurrence, refer to the section of supplementary explanation.
17 1 20	Reserved			-	-
21	Motion Command Response Code (MCMDRCODE)		$\square \square 714$	0 to 65535	The motion command (OW[]ص20) under execution is reported. Refer to OW $\square \square 20$ for motion commands.
22	Motion Command Status (MCMDSTS)	IW $] \square 15$		Reports the execution status of the motion command (OWD $\square 20$). Made up of bits. The bit configuration is as shown below.	
		Bit	to	Command Execution Flag (BUSY)	Reports the status of the motion command. 0 : Ready (Accomplished) 1: BUSY (under processing) This bit is used in particular as status during suspension.
			1	Command Hold Completion (HOLDL)	Turned "ON" when suspension has been finished. Refer to each motion function for the suspension function.
			2	Distribution Completion (DEN)	Turned "ON" when the issue of movement amount has been completed.
			3	Zero Point Setting Completion (ZSET)	Tumed "ON" when the Zero point setting (ZSET) is issued to the motion command (OW $\square \square 20$) and completed.

Table 5．6 Details of Motion Monitoring Parameters（Cont＇d）

No．	Name	Register No．		Setting range／ Bit name	Description
22	Motion Command Status （MCMDSTS）	Bit	4	External Positioning Signal Latch Completion （EX＿LATCH）	This bit is turned on upon completion of latching the external signal input when External positioning（EX＿POSING）is set to the motion command（OW $\square \square 20$ ）： This bit is also turned on upon completion of latching the external signal input when interpolation with position detecting function（LATCH）is set to the motion command（OW $\square \square 20$ ）．
			5	Command Eiror End （FAIL）	Turned＂ON＂when an alarm has been given for a reason during the execution of move command（positioning，constant speed feed，etc．）． Running is not allowed when this bit is＂ON．＂ When this bit is＂ON＂，turn the motion command（OW $\square \square 20$ ）to＂NOP＂ temporarily．
			6	Zero Point Return Completion （ZRNC）	Turned＂ON＂at the time of completion of zero point retum or zero point setting． Tumed＂OFF＂at the start of zero point return．
			7 to 15	Reserved	－－．
23	Number of Digits Below Decimal Monitor （DECNUMM）	IW口ロ16．		0 to 5	The motion fixed parameter No．18，＂Number of Digits Below Decimal Point＂，is reported．
24	Position Control Status （POSSTS）	IW口■17		Reports the status related to the position controlled by the module． Made up of bits．The bit configuration is shown below．	
		$\overline{\mathrm{Bit}}$	0	Machine Lock ON （MLKL）	Tumed＂ON＂under the condition of machine lock． When this bit is＂ON＂，the output of a command pulse is not performed． Consequently，the actual control axis is locked and held stopped．
			1	Zero Point Position （ZERO）	This bit is turned＂ON＂when the zero point return is in completion（IB \square 156 is＂ ON ＂）and $0 \leqq \mid$ Machine coordinate reference position（IL \square 18 ） $\mid \leqq$ Zero point position output width（OW $\square \square 33$ ）．
			2	Second INP Completion （PSET2）	This bit is turned＂ON＂on completion of issue（IB $\square \square 152$ ）is ON and when｜Current position（IL $\square \square 08$ ）－Machine coordinate system position（ILDП18）｜\leqq Second in－position width（OW $\square \square 32$ ）．
			3	ABS System Infinite－length Position Control Data Load Completion （ABSLDE）	This is valid when the motion fixed parameter＂Encoder selection＂is se to＂absolute encoder＂（＝1）and the motion fixed parameter＂Axis selection＂（Bit 5 of the Motion Controller Function Selection Flags）is set to＂infinite－length axis＂（＝1）． The bit is tumed on upon completion of loading when the ABS Systern Infinite－length Position Control Data Load Request（OBDC］2D2）is ON The bit is turned OFF by turning OFF the ABS System Infinite－length Position Control Data Load Request（OB $\square \square 12 \mathrm{D} 2$ ）．
			4	Preset request for number of POSMAX turns completed （TPRSE）	This is valid when the motion fixed parameter＂Axis selection＂（Bit 5 of the Motion Controller Function Selection Flags）is set to＂infinite－length $\operatorname{axis}^{"}(=1)$ ． This bit is ON after the preset completed when request for preset number of POSMAX turns（OB $\square \square$ 2D1）is $O N$ ． This bit is OFF when request for preset number of POSMAX tums（OB \square 2D1）is OFF．
			5	Electronic Gear Selection （GEARM）	Data of the motion fixed parameter No．17，Bit 4 ＊Electronic Gear Selection ${ }^{2}$ is to be reported．
			6	Axis Selection （MODSELM）	Data of the motion fixed parameter No．17，Bit 5 ＂Axis Selection＂is to t reported．
			7 to 11	Reserved	－
			12 to 15	Servo Driver User Monitoring Information Selection Response （USRMONSELR）	The type of monitor information of the value stored in ILD■20 stored．
25	Machine Coordinate Reference Position （MPOS）	ILC口18		$-2^{3 i}$ to $2^{3!}-1$	The reference position in the machine coordinate system that is controlled by this module is reported． This data is not updated when the machine lock condition（IB $\square \square 17$ is ON． Also refer to 3.1 （5）＂Position monitoring．＂
27	Reserved		$\square 1 \mathrm{~A}$	－	－

Table 5.6 Details of Motion Monitoring Parameters (Cont'd)

No.	Name	Register No.		Setting range/ Bit name	Description
29	POSMAX Monitor (PMAXTURN)	ILГ■1C		1 to $2^{\text {sin }}-1$	The motion fixed parameter No.23, "Infinite-length axis reset position (POSMAX)" is to be reported.
31	Number of POSMAX Turns (PMAXTURN)	IL $\square \square 1 \mathrm{E}$		-2^{31} to $2^{39}-1$	Valid when the axis selection of the motion fixed parameter (Bit 5 of the Motion Controlier Function Selection Flags) is set to the infinitelength axis $(=1)$. This bit moves up /down each time the motion fixed parameter No.23, "Infinite-length Axis Reset Position (POSMAX)" is exceeded. Can be preset by the Preset Number of POSMAX Turns Data of the motion setting parameter (OL $\square \square \square 30$) or by the Request for Preset Number of POSMAX Turns (OB $\square \square$ 2D1).
33	Servo Driver User Monitor Information (USRMON)	ルГ]LT20		-2^{31} to $2^{3 T}-1$	Monitor information of the MECHATROLINK servo selected by Bit 12 to 15 of OW $\square \square 2 D$ is stored.
35	Alarms (ALARM)	IL $\square \square 12$		Alarm information is reported. Running is not allowed except for the register being "0." The rise of the alarm clear ($\mathrm{OB} \square \square 006$) clears this register to " 0 ." Made up of bits. The bit configuration is shown below.	
		Bit	0	$\begin{aligned} & \text { SERVOPACK } \\ & \text { Error } \\ & \text { (SVERROR) } \end{aligned}$	A SERVOPACK alarm is detected. For details of the alarm, refer to IW $\square \square \square 24$.
			1	Positive Overtravel (OTF)	Overtravel in the positive direction is detected by the SERVOPACK. (ROT signal ON)
			2	Negative Overtravel (OTR)	Overtravel in the negative direction is detected by the SERVOPACK. (N -OT signal ON)
			3	Positive Software Limit (SOFT)	When the axis selection of the motion fixed parameter is at the finitelength axis, when the positive software limit of the motion fixed parameter is selected to be valid, and at the completion status of zero point return (IB $\square \square] 156$ is " ON "), (1) when the motion command (OW $\square \square 20$) is at interpolation, when the machine coordinate command position (ILD $\square 18$) + stopping distance ($O L \square \square 26$) \geqq Positive software limit value (the motion fixed parameter No.27), this bit is tumed "ON." (2) when the motion command (OW $\square \square 20$) is at positioning, constant speed feed, or constant step feed, and the machine coordinate command position (lL[]$[718$) \geqq Positive software limit value (the motion fixed parameter No.27), this bit is tumed "ON."
			4	Negative Software Limit (SOTR)	When the axis selection of the motion fixed parameter is at the finitelength axis, when the negative software limit of the motion fixed parameter is selected to be valid, and at the completion status of zero point retum (IB $\square \square 156$ is "ON"), (1) when the motion command (OW $\square \square 20$) is at interpolation, when the machine coordinate command position (IL[][]18) + stopping distance ($O L \square \square 26$) \geqq Negative software limit value (the motion fixed parameter No.27), this bit is turned "ON." (2) when the motion command (OW $\square \square 20$) is at positioning, constant speed feed, or constant step feed, and the machine coordinate command position (IL $\square \square 18) \leq$ Negative software limit value (the motion fixed parameter No.29), this bit is turned "ON."
			5	Servo OFF (SVOFF)	At the position control mode (when OB $\square[7002$ is "ON") and when the Servo-ON (OB $\square \square 010$) is turned "OFF", setting the move command (positioning or constant speed feed, etc.) to the motion command (OWDIT20) will cause this bit to be tumed "ON."

Table 5.6 Details of Motion Monitoring Parameters (Cont'd)

No.	Name	Register No.		Setting range/ Bit name	Description
35	Alarms (ALARM)	Bit	6	Positioning Time Over (TIMEOVER)	After issuing is completed, positioning is not completed within the time set by $\mathrm{OW} \square \square 34$ "Positioning completion check time."
			7	Positioning Travel Distance Over (DISTOVER)	A movement order exceeding the limit value of the amount of positioning movement is given.
			8	Filter Type Change Error (FILTYPERR)	The filter type is changed with issuing incomplete.
			9	Filter Time Constant Change Error (FILTIMERR)	The fiter time constant is changed with issuing incomplete.
			10	Control Mode Error (MODERR)	This bit is turned "ON" when the move command (positioning or constant speed feed, etc.) is set to the motion command (OW $\square \square 20$) in a mode other than the position control mode (OB $\square \square 002$ is "OFF").
			11	$\begin{aligned} & \text { Zero Point Not } \\ & \text { Set } \\ & \text { (ZSET NRDY) } \end{aligned}$	A movement order is given with the zero point unset.
			12, 13	Reserved	- -
			14	Servo Driver Synchronous Communication Error (WDT NRDY)	A synchronous communication error of the MECHATROLINK servo is detected.
			15	Servo Driver Communication Error (COM_ERR)	A communication error of the MECHATROLINK servo is detected twic in succession.
			16 .	Servo Driver Command Timeout Error (SVTIMOUT)	The command of the MECHATROLINK servo is not completed within the specified time.
			17	ABS Encoder Count Exceeded (ABSOVER)	The amount of absolute encoder tum is beyond the range that can be handled by SVB.
			18 to 31	Reserved	- - -
37	Servo Driver ALAM Code (SVALARM)		$\square 24$	-	Monitors the alarm code generated in the MECHATROLINK servo. Refer to the Σ Series SGM $\square / S G D-\square N$ User's Manual (SIE-S80026.2).
38	Servo Driver I/OMonitor(SVIOMON)	IW[][25		Monitors the I/O monitor information of the MECHATROLINK servo. Refer to the Σ Series SGMD/ISGD- \square N User's Manual (SIE-S800-26.2).	
		Bit	0	P-OT	Forward rotation overtravel input
			1	$\mathrm{N}-\mathrm{OT}$	Reverse rotation overtravel input
			2	DEC	Deceleration LS input
			3	PA	Encoder Phase-A input
			4	PB	Encoder Phase-B input
			5	PC	Encoder Phase-C input
			6	Not used	-
			7	Not used	-
			8	Not used	-
			9	BRK	Brake condition output
			10 to 15	Not used	---
39	Speed Reference Output Monitor (RVMON)		$\square 26$	-2^{31} to $2^{3 I}-1$	System use parameter
41	Cn Constant Read Data or Position Buffer Read Data		[128	-2^{31} to $2^{31}-1$	There are two meanings as follows: (1) when the position buffer read of the motion setting parameter (Ot $\square[\square 21 F$) is "ON", the position data is read out from the position buffer designated by the position buffer access No. (OLD \square 38) ti be stored in this register. It should be noted that it takes 2 scans from turning "ON" the position buffer read command ($\mathrm{OB} \square \square 21 \mathrm{~F}$ until the data is stored at this register. (2) The values of the Cn constants read out from the SERVOPACK are stored when the Motion Command Code (OWपロ20) is CN RD $(=17)$.

Table 5．6 Details of Motion Monitoring Parameters（Cont＇d）

No．	Name	Register No．	Setting range／ Bit name	Description
43	Position Reference Output Value Monitor （XREFMON）	Hロロ2A	-2^{31} to $2^{3,1}-1$	System use parameter Position command data output to the servo driver is stored． This bit is＂ 0 ＂under the machine lock condition（IB $\square \square 170$ is＂ON＂）．
45	Reserved	ILD］72C	－	
47	Calculated Reference Coordinate System Position （POS）	IL口】2E	-2^{31} to $2^{31}-1$	Selecting the infinite－length axis $(=1)$ at the motion fixed parameter ＂Axis selection＂（Bit 5 of the Motion Controller Function Selection Flags）gives a sense to this bit． The target position at each scan for the infinite－length axis is reported． Also refer to 3.1 （5）＂Position monitoring．＂
$\begin{gathered} 49 \\ 1 \\ 56 \end{gathered}$	Reserved		${ }^{-}$	
57 59	Lower－place Two Words of Encoder Position at Shutdown （eposmL）	12口138	-2^{31} to $2^{31}-1$	This is valid when the motion fixed parameter＂Encoder sefection＂is set to＂absolute encoder＂（＝1）and the motion fixed parameter＂Axis selection＂（Bit 5 of the Motion Controller Function Selection Flags）is set to＂infinite－length axis＂（＝1）． The lower－place two words of the encoder position are reported．
59 61	Upper－place Two Words of Encoder Position at Shutdown （eposmH）	ILD］［］3A	-2^{31} to $2^{31}-1$	This is valid when the motion fixed parameter＂Encoder selection＂is set to＂absolute encoder＂$(=1)$ and the motion fixed parameter＂Axis selection＂（Bit 5 of the Motion Controller Function Selection Flags）is set to＂infinite－length axis＂（＝1）． The upper－place two words of the encoder position are reported．
$\begin{array}{r}61 \\ \hline 63 \\ \hline\end{array}$	Lower－place Two Words of Puise Position at Shutdown （aposmL）	12口ロ36	-2^{37} to $2^{31}-1$	This is valid when the motion fixed parameter＂Encoder selection＂is set to＂absolute encoder＂（＝1）and the motion fixed parameter＂Axis selection＂（Bit 5 of the Motion Controller Function Selection Flags）is set to＂infinite－length axis＂$(=1)$ ． The lower－place two words of the pulse position are reported．
63	Upper－place Two Words of Pulse Position at Shutdown （eposmH）	1L［］［］3E	-2^{31} to $2^{31}-1$	This is valid when the motion fixed parameter＂Encoder selection＂is set to＂absolute encoder＂（＝1）and the motion fixed parameter＂Axis selection＂（Bit 5 of the Motion Controiler Function Selection Flags）is set to＂infinite－length axis＂$(=1)$ ． The upper－place two words of the pulse position are reported．

【Supplementary explanation】

1. Causes of error occurrence in fixed parameter/setting parameter setting
(1) Fixed parameter setting errors

IWप \square OF	Cause of error occurrence
101	A value other than 0 and 1 is set to "Axis Use Selection."
103	A value other than 0 to 2 is set to "Encoder Selection."
105	A value other than 4 to 6 is set to "Pulse Counting Mode Selection."
107	A value other than 1 to 32000 is set to "Rated Motor Speed Setting."
108	"Number of feedback pulses per motor ratation" is not a multiple of 4 within the range between 4 and 65535.
116	A value other than 0 and 1 is set to "Simulation Mode Selection."
117	- A value other than 0 to 3 is set to "Reference Unit Selection" of the "Motion Controller Function Selection Flags." - "Axis Selection" of the "Motion Controller Function Selection Flags" is set to "infinite-length axis" when a 15 -bit or more absolute value encoder is used.
118	A value other than 0 to 5 is set to "Number of Digits Below Decimal Point." - The result of the calculation of "Gear ratio (motor side) \times Number of feedback pulses per motor rotation \times multiplier $\times 10^{(n-1) w}$ exceeds $2^{31}-1$.
119	A value other than 1 to $2^{3 \top}-1$ is set to "Travel Distance per Machine Rotation.*
121	- A value other than 1 to 65535 is set to "Servomotor Gear Ratio." - The result of the calculation of "Servomotor gear ratio \times Number of feedback pulses per motor rotation \times multiplier" exceeds $2^{31}-1$.
122	- A value other than 1 to 65535 is set to "Machine Gear Ratio." - The calculation results of the "Machine gear ratio \times Travel distance per machine rotation" exceeds $2^{31}-1$.
123	A value other than 1 to $2^{3 \prime}-1$ is set to "Infinite-length Axis Reset Position."
125	A value other than 1 to $2^{31}-1$ is set to "Maximum Number of Absolute Encoder Turns."
131	A value other than 0 to 3 is set to "Zero Point Return Method."

(2) Setting parameter setting errors

IW ${ }^{\text {a }}$]OF	Cause of error occurrence
2	A position buffer is used when the position reference method = incremental.
13	A negative value is set to "Linear Acceleration/deceleration Time Constant."
17	A value other than 1 to 5000 is set to "Position Loop Gain Setting."
18	A value other than 0 to 100 is set to "Feed Forward Gain Setting."
19	A value other than 1 to 256 is set to "Position Reference Setting" when a position buffer is used.
21	A value other than 0 to 5100 is set to "Filter Time Constant" when the filter selection = movement averaging filter.
22	- A negative value is set to "Speed Reference Designation." - An overflow is caused when the "Rapid Feed Speed" is converted to the command speed for the MECHATROLINK servo.
30	A value other than 1 to 20000 is set to "Speed Loop Gain Setting."
33	An incorrect command is set to "Motion Command Code."
34	A value other than 0 to 2 is set to "Filter Type Selection."
35	- A negative value is set to "Rapid Feed Speed." - An overflow is caused when the "Rapid Feed Speed" is converted to the command speed for the MECHATROLINK servo.
41	- A value other than 0 to $2^{31}-1$ is set to "STEP Travel Distance." - An amount of movement exceeding the limit value of the amount of incremental movement is set to "STEP Travel Distance" when the electronic gear is valid.
45	- A negative value is set to "Override." - An overflow is caused during override operation.
55	- A value other than 1 to 4095 is set to "User constant $C_{n "}$ when the motion command CN_RD/CN_WR is executed. - A value other than 1 and 2 is set to "Number of words" when the motion command CN_RD/CN_WR is executed. - A value other than 0 to 9 is set when the motion command ALM_MON is executed. - A value other than 0 to 9 is set when the motion command ALMHIST_MON is executed.

5.3 Examples of Motion Parameter Settings

5.3.1 Examples of Motion Fixed Parameter Settings

Refer to Table 5.1 "List of Motion Fixed Parameters."
Table 5.7 Examples of Motion Fixed Parameter Settings

No.	Name	Setting range/Bit name		Description	Setting (examples)
1	Axis Use Selection (USESEL)	0 or 1 (Initial value $=0$)		$\begin{array}{\|l\|} \hline \text { 0: Not used } \\ \text { 1: Used } \\ \hline \end{array}$	1
2	Reserved		-	- -	-
3	Encoder Selection (ENCSEL)	$\begin{aligned} & 0 \text { or } 1 \\ & \text { (Initial value }=0 \text {) } \end{aligned}$		0: Incremental encoder 1: Absolute encoder	0
4	Reserved		-	-	-
5	Pulse Counting Mode Selection (PULMODE)	$\begin{aligned} & 4 \text { to } 6 \\ & \text { (Initial value }=6 \text {) } \end{aligned}$		4: A/B method (multiplied by 1) 5: A/B method (multiplied by 2) 6: AB method (multiplied by 4)	6
6	Reserved		-	-	-
7	Rated Motor Speed Setting (NR)	$\begin{aligned} & 1 \text { to } 32000 \\ & \text { (Initial value }=3000 \text {) } \end{aligned}$		1=1 $\mathrm{r} / \mathrm{min}$	3000
8	Number of Feedback Pulses per Rotation (FBppr)	A multiple of 4 between 4 and 65532 (Initial value $=2048$)		1=1 pulse/vev -Set a yet-to-be-multiplied value.	2048
$\begin{gathered} 9 \\ 1 \\ 15 \end{gathered}$	Reserved	-		-	-
16	Simulation Mode Selection (SIMULATE)	0 or 1		0: Normal operation mode 1: Simulation mode	0
17	Motion Controller Function Selection Flags (SVFUNCSEL)	Bit	0 to 3: CMD UNIT (Initial value $=0$)	Reference Unit Selection 0: pulse (electronic gear invalid) 1: mm 2: deg 3: inch	0
			4: USE_GEAR (Initial value $=0$)	Electric Gear Selection 0 : Invalid 1: Valid	0
			5: PMOD_SEL (Initial value $=0$)	Axis Selection 0 : Finite-length axis 1: Infinite-length axis	0
			6: Reserved	- -	-
			7: USE_SLIMP (initial value $=0$)	Positive Software Limit Selection 0 : Invalid 1: Valid	0
			8: USE_SLIMN (Initial value $=0$)	Negative Software Limit Selection 0 : Invalid 1: Valid	0
			9: USE_OV (initial value $=0$)	Override Selection 0 : Invalid 1: Valid	0
			10/11: Reserved		-
			12: THROUMOD (Initial value $=0$)	Servo Driver Transparent Command Mode 0 : Invalid 1: Valid	0
			13/14: Reserved	-	-
			15: SWGBVF (Initial value $=0$)	Interpolation Command Segment Distributing Function 0 : Valid 1: Invalid	0

Table 5.7 Examples of Motion Fixed Parameter Settings (Cont'd)

No.	Name	Setting range/Bit name	Description	Setting (examples)
18	Number of Digits : Below Decimal Point	0 to 5 (Initial value $=3$)	Set the number of digits to the right of the decimal point of reference (Example) For the number of digits to the right of the decimal point $=3$, mm : One reference unit $=0.001 \mathrm{~mm}$ $\mathrm{deg}:$ One reference unit $=0.001 \mathrm{deg}$ inch: One reference unit $=0.001$ inch This parameter and the reference unit selection (See the motion fixed parameter No.17.) gives the minimum reference unit. However, the minimum unit of "pulse" is not affected by this parameter.	3
19	Travel Distance per Machine Rotation (PITCH)	$\begin{aligned} & 1 \text { to } 2^{31}-1 \\ & \text { (initial value }=10000 \text {) } \end{aligned}$	1=1 reference unit !	10000
21	Servomotor Gear Ratio (GEAR MOTOR)	$1 \text { to } 65535$	$1=1$ rotation	1
22	Machine Gear Ratio (GEAR MACHINE)	$\begin{aligned} & 1 \text { to } 65535 \\ & \text { (Initial value }=1 \text {) } \end{aligned}$	1=1 rotation	1
23	Infinite-length Axis Reset Position (POSMAX)	$\begin{aligned} & 1 \text { to } 2^{31}-1 \\ & \text { (Initial value }=360000 \text {) } \end{aligned}$	1=1 reference unit :	360000
25	Maximum Number of Absolute Encoder Tums (MAXTURN)	$\begin{aligned} & 1 \text { to } 2^{31}-1 \\ & \text { (Initial value }=99,999) \end{aligned}$	$1=1$ rotation	99999
27	Positive Software Limit (SLIMP)	$\left\{\begin{array}{l} -2^{31} \text { to } 2^{31}-1 \\ \text { (Initial value }=2^{31}-1 \text {) } \end{array}\right.$	1=1 reference unit	$2^{31}-1$
29	Negative Software Limit (SLIMN)	$\begin{aligned} & -2^{31} \text { to } 2^{3 T}-1 \\ & \text { (Initial value }=-2^{31} \text {) } \end{aligned}$	1=1 reference unit	$-2^{3 T}$
31	Zero Point Retum Method (ZRETSEL)	0 to 3 (Initial value $=0$)	0 : DEC1 signal $+C$ signal 1: ZERO signal 2: DEC1 signal (with switch width)+ZERO signal 3. C pulse	0
32	Reserved	\cdots		-

5.3.2 Examples of Motion Setting Parameter Settings

These are used for commanding the motion control module. At the beginning of high-speed scanning, they are transferred to the motion control module in a batch.

Motion control can be performed by simply setting the parameters in this register area.
Table 5.8 Examples of Motion Setting Parameter Settings

Table 5.8 Examples of Motion Setting Parameter Settings (Cont'd)

Table 5.8 Examples of Motion Setting Parameter Settings (Cont'd)

					Setting (examples)					
No.	Name	Register No.	Setting range/ Bit name	Description	号	-	矿	$\stackrel{5}{\text { ci }}$	\#	[
33					1	2	3	6		
										8

Table 5.8 Examples of Motion Setting Parameter Settings (Cont'd)

Table 5.8 Examples of Motion Setting Parameter Settings (Cont'd)

No.	Name	Register No.		Setting range/ Bit name	Description	Setting (examples)							
				[c	c	枈				
46	Position Control Flags		1720				0000H						
	Flags (POSCTRL)	Bit	0	MLK (initial value $=0$	```Machine Lock Mode Setting 0: OFF 1:ON```	0							
			1	TPRSREQ (Initial value $=0$)	Request for Preset Number of POSMAX Turns 1: Demand ON	0							
			2	ABSLDREQ (Initial value $=0$)	ABS System Infinite-length Position Control Data Load Request 1: Demand ON	0							
			$\frac{3}{12} 11$	Reserved	Set "0."	0							
			$\begin{aligned} & 12 \text { to } \\ & 15 \end{aligned}$	USRMONSEL Servo Driver User Monitoring Information Selection	Refer to the Σ Series SGM[]/SGD-[]N User's Manual (SIE-S800-26.2).	0							
47	Workpiece Coordinate System Offset (OFFSET)	OLD $\square 2 \mathrm{~L}$		$\begin{aligned} & -2^{31} \text { to } 2^{31}-1 \\ & \text { (Initial value } \\ & =0 \text {) } \end{aligned}$	1=1 reference unit Leave the initial value.	0							
49	Preset Number of POSMAX Tums Data (TURNPRS)			$-2^{31} \text { to } 2^{31}-1$ (Initial value $=0$)	1=1 rotation	0							
51 52	Second In-position Width (INPWIDTH)	OW	$\square 32$	$\begin{aligned} & \begin{array}{l} 0 \text { to } 65535 \\ \text { (Initial value } \\ =0) \end{array} \\ & \hline 0 \text { ta } \end{aligned}$	1=1 reference unit (For units of pulse : 1=1 pulse)	0							
$\begin{array}{r}52 \\ \hline 53\end{array}$	$\begin{aligned} & \text { Zero Point Position } \\ & \text { Output Width } \\ & \text { (PSETWIDETH) } \end{aligned}$	OW	$\square] 33$	$\begin{aligned} & 0 \text { to } 65535 \\ & \text { (Initial value } \\ & =10 \text {) } \end{aligned}$	1=1 reference unit	10							
53 54	Positioning Completion Check Time (PSETTIME)	OW $\square \square 34$		$\begin{aligned} & 0 \text { to } 65535 \\ & \text { (Initial value } \\ & =0 \text {) } \end{aligned}$	$1=1 \mathrm{~ms}$	0							
54	Servo driver Cn Constant No. (Cn_No)	OW $\square[735$ (Initial value $=0$)		Bit0 to 11: Cn constant No. 1 to 4095 Bit12 to 15: Number of words 1 to 2	Refer to the Σ Series SGM $\square /$ SGD- $\square \mathrm{N}$ User's Manual (SIE-S800-26.2).	0							
	Current Servo Driver Alarm Monitor No. Servo Driver Alarm			Oto 9	Refer to the Σ Series SGMD/SGD- $\square \mathrm{N}$ User's Manual (SIE-S800-26.2).								
	Servo Driver Alarm History Monitor No. Cn Constant Change			0 to 9	Refer to the Σ Series SGMD/SGD-■N User's Manual (SIE-S800-26.2).								
55	Cn Constant Change Data (Cn DAT)	OLD $\square 36$		$\begin{aligned} & -2^{31} \text { to } 2^{31}-1 \\ & \text { (initial value } \\ & =0 \text {) } \end{aligned}$	Refer to the Σ Series SGMD/SGD-DN User's Manual (SIE-S800-26.2).	0							

Table 5.8 Examples of Motion Setting Parameter Settings (Cont'd)

	Name	Register No.	Setting range/ Bit name	Description	Setting (examples)					
No.					皆		틀	c	产	
57	Lower-place Two Words of Encoder Position at Shutdown	$\begin{aligned} & \text { OLD } \square 38 \\ & \text { (Initial value } \\ & =0 \text {) } \end{aligned}$	$\begin{aligned} & -2^{31} \text { to } 2^{31}-1 \\ & \text { (Initial value } \\ & =0) \\ & \hline \end{aligned}$	Setting data at the ABS system infinitelength position control data load request ($1=1$ pulse)	0					
	Position Buffer Access No.		$\begin{aligned} & 1 \text { to } 256 \\ & \text { (Initial value } \\ & =0 \text {) } \end{aligned}$	Position buffer access No. when $O B \square \square] 21 E$ $=1$ or OB $\square \square 21 \mathrm{~F}=1$	0					
59	Upper-place Two Words of Encoder Position at Shutdown	OLD].]3A (Initial value $=0$)	-2^{31} to $2^{31}-1$	Setting data at the ABS system infinite-length position control data load request ($1=1$ pulse)	0					
	Position Buffer Write Data		-2^{31} to $2^{31}-1$	Position buffer write data when OBD $\square, 721 \mathrm{~F}=$ 1	0					
61	Lower-place Two Words of Pulse Position at Shutdown	$\begin{aligned} & \text { OL } \square \square 3 \mathrm{C} \\ & \text { (Initial value } \\ & =0 \text {) } \end{aligned}$	$-2^{3 \prime}$ to $2^{3 /-1}$	Setting data at the ABS system infinite-length position control data load request (1=1 pulse)	0					
. 63	Upper-place Two Words of Pulse Position at Shutdown	$\begin{aligned} & \begin{array}{l} \text { OLD } \square 3 E \\ \text { (Initial value } \\ =0 \end{array} \\ & \hline \end{aligned}$	-2^{31} to $2^{3 T}-1$	Setting data at the ABS system infinite-length position control data load request ($1=1$ puise)	0					

(Note) 1. The above are settings of examples. Set appropriate values that suit your machine.
2. The diagonally lined boxes show areas not used in motion function. Set corresponding initial values.

5.4 User Constants of MECHATROLINK Servo SGD- $\square \square \square$ N

List of user constants

No.	. Name	Size	Unit	Range	Initial value
Cn-0001	Memory switch 1	2	Bit	-	0380H
Cn-0002	Memory switch 2	2	Bit	-	0000H
Cn-0003	Load inertia	2	\%	0 to 65535	100
Cn-0004	Speed loop gain	2	0.1 Hz	1 to 20000	400
Cn-0005	Speed loop integration time constant	2	0.01 ms	100 to 65535	2000
Cn-0006	Emergency stop torque	2	\%	0 to MAX	MAX
Cn-0007	Positioning proximity detection width	2	reference unit	0 to 10000	10
Cn-0008	Positive torque limit	2	\%	0 to MAX	MAX
Cn-0009	Negative torque limit	2	\%	0 to MAX	MAX
Cn-000A	System reserved	2	-	-	0
Cn-000B	System reserved	2	-	-	0000 H
Cn-000C	Mode SW (torque reference)	2	\%	0 to 32767	200
Cn-000D	Mode SW (speed reference)	2	r/min	0 to 32767	0
Cn-000E	Mode SW (acceleration)	2	$0.167 \mathrm{r} / \mathrm{s}^{2}$	0 to 3000	0
Cn-000F	Mode SW (erтor pulse)	2	pulse	0 to 10000	0
Cn-0010	System reserved	2	-	-	0000H
Cn-0011	Number of encoder pulses	2	P/R	513 to 32767	2048
Cn-0012	Brake timing for servomotor stop (delay time from the reference to SVOFF)	2	10 ms	0 to 50	0
Cr-0013	Memory switch 3	2	Bit	-	0000H
Cn-0014	Memory switch 4	2	Bit	-	0000H
Cn-0015	Brake timing with servomotor running (reference output speed)	2	r/min	0 to MAX	100
Cn-0016	Brake timing with servomotor running (waiting time from SVOFF to reference)	2	10 ms	10 to 100	50
Cn-0017	Torque reference filter time constant	2	$\mu \mathrm{S}$	0 to 25000	400
Cn-0018	Torque reference filter time constant (secondary)	2	$\mu \mathrm{S}$	0 to 25000	0
Cn-0019	System reserved	2	-	-	0000H
Cn-001A	Position loop gain	2	$0.01 / \mathrm{s}$	1 to 50000	4000
Cn-001B	Positioning completion width	2	reference unit	0 to 250	7
Cn-001C	Bias	2	100 reference unit/s	0 to MAX	0
Cn-001D	Feed forward gain	2	\%	0 to 100	0
Cn-001E	Position error overflow range	2	reference unit	1 to 65535	65535
Cr-001F	First level linear acceleration/deceleration time constant	2	$\begin{aligned} & 1000 \\ & \text { reference unit/s }{ }^{2} \end{aligned}$	0 to 65535	0

- List of user constants (Cont'd) .

No.	Name	Size	Unit	Range	Initial value
Cn-0020	Second level linear acceleration/deceleration time constant	2	$\begin{gathered} 1000 \\ \text { reference unit/s }{ }^{2} \end{gathered}$	0 to 65535	100
Cn-0021	Acceleration/deceleration constant changeover speed	2	reference unit/s	0 to 65535	0
Cn-0022	Zero point return approach speed 1	2	$\begin{gathered} 100 \\ \text { reference unit/s } \end{gathered}$	0 to 65535	50
Cn-0023	Zero point return approach speed 2	2	$\begin{gathered} 100 \\ \text { reference unit/s } \end{gathered}$	0 to 65535	5
Cn-0024	Electronic gear 8 (numerator)	2	-	1 to 32768	4
Cr-0025	Electronic gear A (denominator)	2	-	1 to 32768	1
Cn-0026	Average move time	2	$100 \mu \mathrm{~s}$	0 to 5100	0
Cn-0027	Feed forward reference filter	2	${ }^{\prime} \mu \mathrm{S}$	0 to 64000	0
Cn-0028	Final travel distance for zero point return	4	reference unit	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	1000
Cn-002A	Zero point position range	2	reference unit	0 to 65535	10
Cn-002B	Final travel distance to extemal positioning	4	reference unit	$\begin{aligned} & -2147483648 \\ & \text { to } 2147483647 \end{aligned}$	100
Cn-002D	Exponential acceleration speed bias	2	reference unit/s	0 to 32767	0
Cn-002E	Exponential acceleration time constant	2	$100 \mu \mathrm{~S}$	0 to 5100	0
Cn-002F	Positive software limit	4	reference unit	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	8192×99999
Cn-0031	Negative software limit	4	reference unit	$\begin{aligned} & -2147483648 \\ & \text { to } 2147483647 \end{aligned}$	-8192×99999
Cn-0033	Absolute encoder zero point position offset	4	reference unit	$\begin{aligned} & -2147483648 \\ & \text { to } 2147483647 \end{aligned}$	0
Cn-0035	Speed loop compensation constant	2	-	-	0000H
Cn-0036	System reserved	2	-	-	0000 H
Cn-0037	Motor selection *	2	-	-	0000 H
Cn-0038	PG power supply voltage change	2	1 -	52000 to 58000	52500
Cn-0039	System reserved	2	-	-	0000H
Cn-003A :	System reserved	2	-	- -	0000H
Cn-003B	Systern reserved	2	-	-	0000H
Cn-003C	System reserved	2	-	-	0000 H
Cn-003D ${ }^{\text {' }}$	System reserved	2	'-	-	0000H
Cn-003E	System reserved	2	-	-	0000H
Cn-003F	System reserved .	2	, -	-	0000H

1. The maximum values shown in the tables differ according to the SERVOPACK capacity. Ref the relevant SERVOPACK manuals for details on user constants.
2. $\mathrm{Cn}-35, \mathrm{Cn}-37$, and $\mathrm{Cn}-38$ can be set only for SGDB-[]N SERVOPACKs. They are not displa on the parameter window for SGD- $\square \square \square$ N SERVOPACKs.
3. The user constants reserved by the system are not displayed on the parameter window.

Details of the memory switch bits

The details of each memory switch bit (bit type user constants) out of the SERVOPACK user constants are as follows:

1. Cn-0001: Memory switch 1

$\mathrm{Cn}-0001$: The details of the memory switch 1 bits are given below.

Bit	Name	Description	Initial value
0	SV_ON mask	0: SV_ON/SV_OFF valid 1: Always SV ON	0
1	SENS_ON mask	0: SENS_ON/SENS_OFF valid 1: Always SENS ON	0
2	P-OT mask	0: P-OT signal valid 1: P-OT signal masked (always invalid)	0
3	N-OT mask	0: N-OT signal valid 1: N -OT signal masked (always invalid)	0
4	-	-	0
5	Power outage mask	0: Servo alam after recovery from power outage 1: Power outage masked (no servo alarm with power outage recovery)	0
6	Base block power outage prevention method	0 : Dynamic brake (DB) stop 1: Free-run stop	0
7	Status after DB stop	0: Releasing DB 1: Not releasing DB	1
8	Operation with OT stop	0 : The stopping method is in accordance with the bit 6 setting. 1: The operation is decelerated to stop at the emergency stop torque.	1
9	Operation after deceleration to stop at OT emergency stop torque	0 : Servo OFF after deceleration to stop 1: Zero clamp after deceleration to stop	1
A	Position error with servo OFF	0: Clearing the position error 1: Holding the position error	0
B	Mode switch function	0 : Mode switch function available (in accordance with bits C and D) 1: Mode switch function not available	0
c	M	00: Mode switch selection (internal torque reference) 01: Unused (Do not set.)	0
D		10: Mode switch selection (acceleration) 11: Mode switch selection (error pulse)	0
E	Encoder selection	0 : Incremental encoder 1: Absolute encoder	0
F	-	-	0

Note
Never change the initial value of the bit named "-."

2. Cn-0002: Memory switch 2

$\mathrm{Cn}-0002$: The details of the memory switch 2 bits are given below.

Bit	Name	Description	Initial value
0	Reverse rotation mode	0 : Nomal rotation is in the CCW direction. 1: Normal rotation is in the CW direction.	0
1	Zero point error detection mask	0 : Zero point error detection is performed (only when the absolute encoder is used). 1: Zero point error detection is masked (not performed).	0
2	\div	: -	0
3	-	-	0
4	\cdots	-	0
5	-	- \quad	0
6	Software limit check by reference target	0 : Check is not performed. 1: Check is performed. ${ }^{\text {t }}$	0
7	$\bar{\square} \quad \cdots \quad \because \quad$.	,	0
8	Servomotor selection	$\begin{aligned} & \text { 0: SGM } \\ & \text { 1: SGMP } \end{aligned}$	0
9	\ldots	-	0
A	-	- - .	0
B	-	-	0
C	- "	- -	0
D	.-	-	0
E	\cdots	-	0
F	-.	, -	0

Note
Never change the initial value of the bit named "-."

3. Cn-0003: Memory switch 3

$\mathrm{Cn}-0003$: The details of the memory switch 3 bits are given below.

Bit	Name	Description	Initial value
0	-	-	0
1	-	-	0
2	-	-	0
3	-	-	0
4	-	-	0
5	-	-	0
6	-	-	0
7	-	-	0
8	-	-	0
9	-	-	0
A	System use		0
B	System use		-
C	-	-	0
D	-	-	-
E	-		-
F	-		-

For details, refer to 7.3.3 in the Σ Series SGM $\square /$ SGD- \square N User's Manual (SIE-S800-26.2).

Note

Never change the initial value of the bit named "-."

4. Cn-0004: Memory switch 4

$\mathrm{Cn}-0004$: The details of the memory switch 4 bits are given below.

Bit	Name	Description	Initial value
0	-	- -	0
1	Zero point returm direction	0: Direction of forward rotation 1: Direction of reverse rotation	0
2	P-SOT mask	0 : P-SOT valid 1: P-SOT invalid	0
3	N-SOT mask	0 : N -SOT valid 1: N-SOT invalid	0
4.	-	-	0
5	-	, -	0
6	-		0
7	-	. -	0
8	-	-	0
9	Brake operation	0: Operation at the command BRK_ON/BRK_OFF 1: Operation by the SERVOPACK (BRK ON/BRK OFF invalid)	0
A	P-OT signal	0 : Positive logic 1: Negative logic	0
B	N-OT signal	0 : Positive logic 1: Negative logic	0
C	DEC signal	0: Positive logic 1: Negative logic	0
D	. -	- -	0
E	-	-	0
F.	- .	: -	0

* For details, refer to 7.3.3 in the Σ Series SGM $\square /$ SGD- \square N User's Manual (SIE-S800-26.2).

Note

(1) Never change the initial value of the bit named "-."
(2) Set both bit 2 and bit 3 of the user constant "Cn-0004" of the SERVOPACK to " 1 " to invalida P-SOT and N-SOT.

5. $\mathbf{C n}-37: \mathbf{C n}-0037:$ Motor selection

Group	SERVOPACK	Motor	Motor No. (Cn-0037 Setting)
05	SGDB-05AN	SGMG-03ADB	171
		SGMG-05ADA	142
		SGMP-04A	126
		SGM-04A	106
10	SGDB-10AN	SGMG-06A[]B	172
		SGMG-09ADA	143
		SGMG-09A]B	173
		SGMS-10A \square A	163
		SGMP-08A	127
		SGM-08A	107
15	SGDB-15AN	SGMG-13A] $]$ A	144
		SGMG-12A \square B	174
		SGMS-15A $]$ A	164
		SGMP-15A	128
20	SGDB-20AN	SGMG-20A \square]	145
		SGMG-20A $]$ B	175
		SGMS-20A $]$ A	165
30	SGDB-30AN	SGMG-30A \square A	146
		SGMG-30A \square]	176
		SGMS-30ADA	166
		SGMS-22A]IA	155
50	SGDB-50AN	SGMG-44ADA	147
		SGMG-44A \square B	177
		SGMS-40A[]A	167
		SGMD-32A $]$ A	156
		SGMS-50AL]A	168
		SGMD-40A \square A	157
60	SGDB-60AN	SGMG-55A[]A	148
		SGMG-60A■B	178
75	SGDB-75AN	SGMG-75A $]$ A	149
1 A	SGDB-1AAN	SGMG-1AA \square]	140
$1 E$	SGDB-1EAN	SGMG-1EA $\square 7$	150

The motor to be used can be changed using the $\mathrm{Cn}-0037$ user constant if it belongs to the same group.

- Relationship between the user constants of the SERVOPACK and SVB parameters

Since some parameters of the SVB controller and user constants of the SERVOPACK have th same meaning, you must be careful in using them.

1. List of parameters that require attention

The parameters that have the same meaning and require attention at the time of use are liste below.

SVB	SERVOPACK
OW $\square \square 10$: Position Loop Gain Setting	Cn -001A: Position loop gain
OW $\square \square 11$: Feed Forward Gain Setting	Cn-001D: Feed forward gain
OW $\square \square 1 \mathrm{D}$: Speed Loop Gain Seting	Cri-0004: Speed loop gain
OW $\square \square 0 \mathrm{C}$: Linear Acceleration Time Constant	Cn -0020: Second level linear acceleration time constant
OW $\square \square 14$: Filter Time Constant Setting	Cn-0026: Average move time Cn -002E: Exponential acceleration time constant
Fixed parameter 3: Encoder Selection	Cn-0001 bE: Encoder selection
Fixed parameter 8: Number of Feedback Pulses per Rotation	Cn -0011: Number of encoder pulses
Fixed parameter 21: Servomotor Gear Ratio	$\mathrm{Cn}-0024$: Electronic gear ratio (numerator)
Fixed parameter 22: Machine Gear Ratio	Cn-0025: Electronic gear ratio (denominator)
Fixed parameter 17 b7: Positive Software Limit Selection	Cn-000B b2: P-SOT mask
Fixed parameter 17 b 8 : Negative Software Limit Selection	Cn-000B b3: N -SOT mask
Fixed parameter 27: Positive Software Limit	Cn -002F: Positive software limit
Fixed parameter 29: Negative Software Limit	Cn-0031: Negative software limit
OW $\square \square 33$: Zero Point Position Output Width	Cn -002A: Zero point position range

2. Parameters that can be rewritten by the SVB motion command code

The parameters whose setting values on the SVB side can be written in the SERVOPACK side by using the motion command code are as follows:

Parameter name	SVB	SERVOPACK
Second Level Linear Acceleration/deceleration Time Constant	OW $\square \square 0 \mathrm{C}$	Cn-0020
Average Move Filter	OW $\square \square 14$	Cn-0026
Exponential Acceleration Speed	OW $\square \square 14$	Cn-002E
Speed Loop Gain Setting	OW $\square \square 1 \mathrm{D}$	Cn-0004
Position Loop Gain Setting	OW $\square \square 10$	Cn-001A
Feed Forward Gain	OW $\square \square 11$	Cn-001D

To change the parameters, the procedure given below must be followed.

- An example of procedures for writing "Position loop gain" by motion program.

[Example]

Construct the following procedure by user program.
(1) Check that the motion command OW $\square \square] 20$ is " 0 " (NOP).
(2) Wait one scan.
(3) Position loop gain: Store the setting value in OW $\square \square 10$.
(4) Set 15 (KPS command) to the motion command OW $\square \square 20$.
(5) Wait until the command response reaches 15 (KPS command).
(6) Set " 0 " (NOP) to the motion command OW $\square \square 20$.
3. Parameters that must coincide on the SVB side and on the SERVOPACK side

Motion control cannot be performed normally unless they coincide.

Parameter name	SVB	SERVOPACK
Encoder Selection	Fixed parameter 3	$\mathrm{Cn}-0001 \quad$ bE
Number of Feedback Pulses per Rotation	Fixed parameter 8	$\mathrm{Cn}-0011$

4. Parameters that must be used on either the SVB side or SERVOPACK side

Motion control cannot be performed normally if the parameters on both sides are used.

Parameter name	SVB	SERVOPACK
Electronic Gear Ratio (Numerator)	Fixed parameter 5 Fixed parameter 8 Fixed parameter 21	Cn-0024
Electronic Gear Ratio_(Denominator)	Fixed parameter 19 Fixed parameter 22	Cn-0025

Note
Normally, do not use the gear ratio on the SERVOPACK side. Set "1" to Cn-0024 and Cn-0025 at the time of setup.

5. Parameters that are not used on the SERVOPACK side

Motion control cannot be performed normally if the parameters on both sides are used.

| Parameter name | SVB | SERVOPACK | |
| :--- | :--- | :--- | :--- | :--- |
| P-SOT Mask | Fixed parameter $17 \quad$ b7 | Cn-000B | b2 |
| N-SOT Mask | Fixed parameter $17 \quad$ b8 | Cn-000B | b3 |
| Positive Software Limit | Fixed parameter 27 | Cn-002F | |
| Negative Software Limit | Fixed parameter 29 | Cn-0031 | |

Note
Be sure to mask P-SOT and N-SOT on the SERVOPACK side. Set "1" to Cn-000B b2 and b3 at the time of setup.
6. Similar but different parameters

Parameter name	SERVOPACK
Zero Point Position Output Width: OW $\square \square 33$	Zero point position range: Cn-002A

As a parameter for zero point position output, that of SVB is used.

6 ABSOLUTE VALUE DETECTION

This chapter describes the absolute value detection system using an absolute encoder.
Be sure to read before using a motor equipped with an absolute encoder.

6.1 Mechanism of the absolute value detecting function

This section describes the absolute value detecting function equipped in SVB.

6.1.1 Outline of the function

The absolute value detection system is a function by which a machine coordinate system is automatically : by detecting the machine position even with the power OFF so that automatic operation can be perform immediately after turning ON the power without performing zero point return.
The features of the absolute value detection system are as follows:

- The zero point return operation does not need to be performed after turning on the powe
- The stored stroke limit function is valid immediately after turning on the power.
- The zero point dog and overtravel limit switches are unnecessary.

For this function, one of the following three running systems can be selected by parameter setting.
(1) Running in the incremental detection system using an incremental encoder.
(2) Running in the absolute value detection system using an absolute encoder.
(3) Running in the incremental detection system using an absolute encoder.

6.1.2 Mechanism of the absolute position detection

- Explanation of basic terms

As a grounding, basic terms that will be used in this chapter are explained below.
(1) Absolute encoder

The absolute position is detected on a semi-closed loop by using the absolute encoder mounted the motor as a rule. The detector consists of an encoder to detect the absolute position within (rotation and a counter to count the number of rotations.

(2) Absolute value data

The absolute value data stored in the encoder consists of the number of rotations from absolute reference position (P) and the position within one rotation of the motor (PO). When power of the device is turned on, the absolute value data is read as serial data.
After, that, movements are made in the same way as a normal incremental encoder.

- Transition of the absolute value detection system

The status transition chart of the absolute value detection system is shown below.

Fig. 6.1 Status Transition Chart of the Absolute Value Detection System
Each status is as follows:
(1) Initialization incomplete

In this state, the operation of the absolute encoder cannot be guaranteed.
This alarm is given when the backup power of the absolute encoder is totally discharged or when the absolute encoder is used for the first time. In this case, the absolute encoder must be initialized.
In this state, zero point setting cannot be executed.
(2) Zero point unset

In this state, zero point setting to determine the zero point on the machine coordinate system is undone. This alarm is given when the power of the system is turned on. In this case, reset the alarm and then execute zero point setting. Axial movements that can be made in the zero point unset condition are manual operations of JOG and STEP.Operation ready
In this state, zero point setting is completed and the absolute value detecting function works so that normal operation can be performed.
(4) Standby

In this state, machine movements are detected even with the power OFF. Data changes due to turn of the absolute encoder are updated.
At this time, the battery is the power source of the absolute encoder.

6.2 Start-up of the absolute value detecting function

This section describes the procedure for starting up the absolute value detection system.

6.2.1 Procedure for starting up the system

To start up the absolute value detection system, the peripheral equipment such as the SERVOPACK ar servomotor must also be checked.
For starting up the absolute value detection system, the procedure given below must be followed.
(1)

(2)

. Check the SERVOPACK (parameter user constants) to see if it is
... set to use the absolute encoder. At this time, also check the "number
.. Check the SERVOPACK (parameter user constants) to see if it is
.. set to use the absolute encoder. At this time, also check the "number of encoder pulses."
(3)

Set the parameters relating to the "absolute value detecting function."

Set up the "absolute encoder" to initial values.
... Perform zero point setting to set the absolute zero point, that is, "zero point in the machine coordinate system."

Correctly performing the operations from (1) through (5) establishes the "operation ready" condition that the absolute value detection system works normally.
In the following cases, execute the procedure for starting up the absolute value detection system.
(1) When starting up the absolute value detection system for the first time.
(2) When the servomotor has been changed.
(3) When an absolute value encoder-related alarm is given.

6.2.2 Setting the related parameters

Out of the various parameters of the SVB unit, the absolute value detection parameters are explained.
Prior to starting up the absolute value detection system, set the following related parameters.
Table 6.1 Parameters of the SVB:Unit

Parameter No.	Name	Setting range	Unit	Initial ve
Fixed parameter 3	Encoder Selection	0 : Incremental encoder 1: Absolute encoder	--	0
Fixed parameter 8	Number of Feedback Pulses per Rotation	A multiple of 4 within the range between 4 and 65535	$1=1$ pulse	2048
Fixed parameter 17 b5:	Axis Selection	0 : Finite-length axis 1: Infinite-length axis	-	0
Fixed parameter 23	Infinite-length Axis Reset Position	1 to $2^{31}-1$	$1=1$ reference unit	3600C
Fixed parameter 25	Maximum Number of Absolute Encoder Turns	1 to $2^{31}-1$	1=1 rotation	9999
Setting parameter 7 (OL $\square[706$)	Machine Coordinate System Zero Point Offset Setting	-2 to $2^{31}-1$	1=1 reference unit	0

Table 6.2 User Constants of the SERVOPACK

User constant	Name	Setting range	Unit	Initial value
Cn-0001bE	Encoder Selection	$0:$ Incremental encoder 1: Absolute encoder	-	0
$\mathrm{Cn}-0011$	Number of Encoder Pulses	513 to 32767	P/R	2048

(1) Setting of the encoder selection

On the axis to perform absolute value detection, set both fixed parameter 3 of the SVB unit and user constant $\mathrm{Cn}-0001 \mathrm{bE}$ of the SERVOPACK to "absolute encoder."
The absolute value detection system can be set on each axis. Incremental position detection axes and absolute position detection axes can be mixed in the system.
(2) Setting of the number of encoder pulses

Set the number of pulses of the absolute encoder in use to fixed parameter 8 of the SVB unit and user constant Cn -0011 of the SERVOPACK.

- SVB fixed parameter 8
- SERVOPACK user constant $\mathrm{Cn}-0011$
(Note) Be sure to set the same value to both.
(3) Axis selection

Set whether or not there are movement limits on the control axis.
(4) Infinite-length axis reset position

Set the cycle of the infinite-length axis in the reference unit. This parameter is valid when the absolute encoder is used and the infinite-length axis is selected.
(5) Maximum number of the absolute encoder turns

According to the difference in pulse terms between the value on the machine coordinate system stored upon power OFF and the value in the machine coordinate system at the next power ON, the "maximum number of the absolute encoder turns exceeded" error is given.
(6) Machine coordinate system zero point offset setting

This is a parameter to determine the zero point in the machine coordinate system. The meaning of this parameter differs according to the type of encoder in use and the finite-length/infinite-length axis selection.

Finite- length axis	INC axis	Parameter (OL $\square \square 06$) ABSOFF is always valid.
Infinite- length axis	ABS axis	Parameter (OL $\square \square$ axis
	Parameter (OL ABSOFF is always valid.	

1. On an ABS finite-length axis

The setting parameter (OL $\square \square 06$) "Machine Coordinate System Zero Point Offset Setting" is always valid. By simply changing the "Setting of the position offset of the zero point," the zero point in the machine coordinate system can be changed. Therefore, zero point setting operation does not need to be performed on the ABS finite-length axis.
2. On an $A B S$ infinite-length axis

The setting parameter (OL $\square \square 06$) "Machine Coordinate System Zero Point Offset Setting" is valid only during zero point setting operation.
During zero point setting operation, the regularly electronic-gear converted value of the setting of the position offset of the zero point is taken as the current position in the machine coordinate system.
Set the desired position to the setting parameter (OL $\square \square 06$) "Machine Coordinate System Zero Point Offset Setting."

6.2.3 Initialization of the absolute encoder

In the following cases, initialize the absolute encoder.
(1) When starting up the absolute value detection system for the first time.To initialize the number of rotations from the absolute reference position of the absol encoder to "0."When the motor is left for more than four days with the battery disconnected from the absol encoder.
(4) When an alarm occurs..

- Initialization of the absolute encoder (12-bit)

Initialize the absolute encoder (12-bit type) as follows:Regularly connect the SERVOPACK, servomotor and CP-9200SH.Reset the "absolute value data" in the encoder.
(a) Disconnect the connector on the encoder side.
(b) Short-circuit the connector pins (13) and (14) on the encoder side for one to two seconds.
(c) Remove the short-circuit lead, and securely reinsert the connector in position.

Fig. 6.2 Initialization of the Absolute Encoder
(3) Put back the cables in the regular wiring, and connect the battery for the encoder.
(4) Turn on the system power.

If the absolute encoder alarm is given, start again from operation (1). If no alarm is given, initialization of the absolute encoder is completed.

- Initialization of the absolute encoder (15-bit)

Initialize the absolute encoder (15-bit type) as follows:
(1) Turn off the power of the SERVOPACK and SVB.
(2) Discharge the large-capacity condenser in the encoder by one of the following methods.
A. By using the connector on the encoder side
(a) Disconnect the connector on the SERVOPACK side.
(b) Short-circuit the connector pins (10) and (13) on the encoder side.
(c) Leave the short circuit for two minutes or more.
(d) Remove the short-circuit lead, and securely reinsert the connector in position.
B. By using the connector on the SERVOPACK side
(a) Disconnect the connector on the encoder side.
(b) Short-circuit the connector pins (R) and (S) on the encoder side.
(c) Leave the short circuit for two minutes or more.
(d) Remove the short-circuit lead, and securely reinsert the connector in position.Put back the cables in the regular wiring, and connect the battery for the encoder.
(4) Turn ON the system power.

If the absolute encoder alarm is given, start again from operation (1). If no alarm is given, the initialization of the absolute encoder is completed.

Fig. 6.3 Initialization of the Absolute Encoder

【Supplement】

The type of absolute encoder-equipped servomotor is as follows:
(1) 12-bit encoder

(2) 15-bit encoder

6.3 How to use the absolute encoder

This section describes the precautions for using the absolute encoder and how to set the zero point. Use the absolute encoder differs according to the finite-length/infinite-length axis selection.

6.3.1 Using on a finite-length axis

- Outine

The absolute encoder stores the amount of turn from the encoder zero point in the internal batte back-up memory. Due to this, the zero point on the coordinate system can be obtained witho performing zero point return operation after starting up the system. After starting up the systel movements are made in the same way as an incremental encoder.
However, since the "amount of turn from the encoder zero point" is controlled only within t range of ± 99999 turns, if ± 99999 turns are exceeded, the amount of turn is reset to " 0 ". If t power of the system is turned on again in this state, the position that is controlled by $\mathrm{S} \backslash$ becomes different from that controlled before.

Use the absolute encoder within the range of ± 99999 turns on a finite-length axis, havi movement limits.

Fig. 6.4 Details of a Finite-Length Axis
Therefore, pay attention to the following points when using the absolute encoder on a fini length axis.

- Be sure to initialize the encoder before zero point setting.
- For absolute encoder, use within the range of ± 99999 turns.
(Note) The conditions of the actual machine's movement range differ according to the parameters such as gear ratio.
- Position control when using on a finite-length axis

When using on a finite-length axis, initialize the position upon turning on the power as follows:
Current position in machine coordinate system $=$
Enceder position when the servo power is on + setting parameter (OL $\square \square 06$) "Zero Point Position Offs

* Multi-turn data \times number of encoder pulses + initial incremental amount

On a finite-length axis, the setting parameter (OL $\square \square 06$) "Zero point position offset" is alw valid:

Therefore, the current position on the machine coordinate system can be changed (the zero pi can be set) at any time.
The meaning of the setting parameter ($\mathrm{OL} \square \square 06$) differs according to the finite-length/infin length axis selection.

(1) Finite-length

By setting - (IL $\square \square 02)+$ OL $\square \square 06$ to OL $\square \square 06$, the current position on the machine coordinate system is set to " 0 ".

[Example]

When $I L \square 02=10000$, and $O L \square \square 06=100$,
To set the current position in the machine coordinate system to " 0 " upon execution of "zero point setting":
$-(10000)+100=-9900$
Set -9900 to OL $\square \square 06$.
IL[][]02: Monitoring the calculated position on the machine coordinate system
(2) Infinite-length

By setting the desired position to OL $\square \square 06$ and performing "zero point setting," the current position on the machine coordinate system is set at the set value.

[Example]

To set the current position in the machine coordinate system to " 0 " upon execution of "zero point setting":
Set "0" to OL $\square[] 06$.

4. CAUTION

Do not change the "Zero Point Position Offset (OL $\square \square 06$)" while the machine is running on a finite-length axis.
Doing so may cause damage to the machine or an accident.

- Procedure for zero point setting on a finite-length axis

By performing "zero point setting" after the initialization of the absolute encoder, the zero point in the machine coordinate system is set and a machine coordinate system is created.
Procedure for "zero point setting" on a finite-length axis is shown below.

Fig. 6.5 Procedure for Zero Point Setting on a Finite-Length Axis
*1. The value of OL $\square[\square 06$ must be saved at the same time as it is set.
*2. For saving OL $\square \square] 06$, refer to the "Supplement" shown below.
*3. Execute by the "ZSET" command.

【Supplement】

There are two methods of saving the＂Zero Point Position Offset（OL $\square \square 06$ ）＂as follows：
（1）Saving in the M register by ladder program
Calculate［－（monitoring the calculated position on the machine coordinate system）＋setting of the position offset of the zero point］，store it in OL $\square \square 06$ and save it in the M register at the same time．

Upon turning on the power again or turning on the servo power，store the data saved in the M register in the setting parameter（OL $\square \square 06$ ）＂Zero Point Position Offset．＂

〈 Ladder program required for a finite－length axis ABS system finite－length axis（axis 1）＞

Fig．6．6 An Example of Zero Point Setting Offset
（2）Saving the setting value of the＂Zero Point Position Offset（OL $\square \square 06$ ）＂on the parameter window of CP－717

By setting the value（current value）of the＂Zero Point Position Offset（OL $\square \square 06$ ）＂after execution of＂zero point setting＂as a setting value and saving it，the set value is saved in the controller．Upon turning ON the power again，the saved value of the＂Zero Point Position Offset （OL $\square \square 06$ ）＂is automatically stored．

- Outline

Infinite-length positioning is a function of automatically updating the machine position, progra position (absolute value on the program coordinate system) and the current value at regu intervals according to the values of the fixed parameters. By the infinite-length axis positioni function, repeated positioning in the same direction can be performed.

Fig. 6.7 Amount of Turn from the Encoder Zero Point

By setting Bit 5 "Finite-length/infinite-length Axis Selection" of fixed parameter No. 17=infin: length axis, the following position information is automatically updated in the cycle set by fis parameter No. 23 "Infinite-length axis reset position (POSMAX)."

Parameter No.	Name
IL $\square 02$	Calculated position in machine coordinate system (CPOS)
IL $\square \square 06$	Latch position in machine coordinate system (LPOS)
II $\square \square 08$	Feedback position in machine coordinate system (APOS)
IL $\square \square 18$	Machine coordinate reference position (MPOS)

However, since the "amount of turn from the encoder zero point" is controlled only within range of ± 99999 turns, the absolute encoder as it is cannot be applied to the infinite-length : as described above.

This problem can be solved by the following method.

- Position control when using on an infinite-length axis

Upon turning ON the power of the system again, obtain the pulse position from the rela encoder position by the following expression, using the positions that are controlled by SVB.
To begin with, always save the "pulse position" and "encoder position" in the battery bacl memory as a pair of information pieces. Using the information as "Pulse position at shutdo and "Encoder position at shutdown," respectively, at the next power ON , obtain the pulse posi from the relative encoder position by the following expression.

> Pulse position $=\begin{gathered}\text { pulse position at shutdown }+ \\ \text { (encoder position - encoder position at shutdown) }\end{gathered}$ $*$

* This means the amount of movement while the power is OFF (relative encoder position).

[Supplement】

The meanings of the terms in use are as follows:

- Encoder position: position information of the absolute encoder
(Multi-turn data \times number of encoder pulses + initial incremental pulse)
- Pulse position: position information that is controlled by SVB, which is converted in pulses
- Only 12-bit type absolute encoders can be used on infinite-length axes. If a 15-bit type is set, the "fixed parameter setting error" is given.
- Procedure for zero point setting on an infinite-length axis

Execute the motion command "ZSET" (zero point setting).
The system fixes "Pulse position at shutdown," "Encoder position at shutdown" and all other position information by zero point setting operation.

Procedure for "zero point setting" on an infinite-length axis is shown below.

Fig. 6.8 Procedure for Zero Point Setting on an Infinite-Length Axis
*1. On an infinite-length axis, the setting parameter "Zero Point Position Offset (OL $\square \square 06$)" is valid only when the "ZSET" command is executed.

Therefore, it is not necessary to save OL $\square \square 06$ in the M register.
On an infinite-length axis, set the desired coordinate value to the " Point Position Offset (OL ㅁㅁ6)."
(Example) To set the currently stopped position to the zero point " 0 " in the machine coordinate system:

*2. Execute by the "ZSET" command.

－Creating a ladder program for infinite－length axis position control

For using the absolute encoder on an infinite－length axis，a special ladder program is required fc absolute infinite－length position control upon normal running and turning ON the system powt again．
（1）Normal running
（1）Checking the zero point setting completion status
Check that the monitor parameter＂Zero Point Setting Completion（Bit 3 of $\mathrm{IW} \square \square 15$ ）＂is OI If ON，perform operation（2）．
If OFF，＂Pulse position at shutdown，＂＂Encoder position at shutdown＂and all other positio information are not fixed．In this case，execute the．＂operation to be performed upon turnin ON the system power again＂to set up the position information again，or execute the motio command＂ZSET＂（zero point setting）to newly fix the position data．
（2）Saving＂Pulse position at shutdown＂and＂Encoder position at shutdown＂
Save the following monitor parameters in the battery back－up M register at high－speed sca timing by your ladder program．

> | Monitor parameter "Encoder position at shutdown" (all 4 words of $\mathbb{L} \square \square 38$ and $\mathbb{I L} \square \square 3 \mathrm{~A})$ |
| :--- |
| Monitor parameter "Pulse position at shutdown" (all 4 words of $\mathrm{IL} \square \square 3 \mathrm{C}$ and $\mathrm{IL} \square \square 3 \mathrm{E}$) |

The M register in which the above monitor parameters should be saved must have the followir configuration．

MW $\square \square \square \square \square$	Bit0	Toggle buffer validity flag（ $0=$ invalid， $1=$ valid ）	
	Bitl	Toggle buffer selection flag（ $0=$ buffer $0,1=$ buffer 1 ）	
	Bit2	Position information re－set	est flag（0＝comple
MW $\square \square \square \square \square+1$	Unused		
ロロロロロ＋2	Buffer 0	Monitor parameter＂Encoder position at shutdown＂	Lower－place 2 words（LL口 $\square 38$ ）
			Upper－place 2 words（ILD \square 3A）
		Monitor parameter＂Pulse position at shutdown＂	Lower－place 2 words（IL $\square \square 3 \mathrm{C}$ ）
			Upper－place 2 words（ILD $\square 3 \mathrm{E}$ ）
ML $\square \square \square \square \square+10$	Buffer 1	Monitor parameter＂Encoder position at shutdown＂	Lower－place 2 words（1L口 $\square 38$ ）
ML $\square \square \square \square \square+12$			Upper－place 2 words（ILD $\square 3 \mathrm{~A}$ ）
MLD $\square \square \square \square+14$		Monitor parameter＂Pulse position at shutdown＂	Lower－place 2 words（ $1 \square \square 3 \mathrm{C}$ ）
ML $\square \square \square \square \square+16$			Upper－place 2 words（ILD \square 3E）

（Note）Two buffers are required to save＂Encoder position at shutdown＂and＂Pulse position shutdown＂because the 4 word position data may not be fixed before ending if t power is cut off during execution of high－speed scanning．

Store the values in the buffers in accordance with the following flow.

Fig. 6.9 Procedure for Storing the Values in the Buffers (Flow Chart)

An example of programming the flow in Fig. 6.9 (ladder program) is shown in Fig. 6.10.
The first axis of module No. 1 is used. If the module No. and/or the axis No. is different, rewri the motion parameter register No.

Fig. 6.10 Procedure for Storing the Values in the Buffers (Ladder Program)
(2) Operation to be performed upon turning ON the system power again (including turning ON the servo power again)
Re-setup the position data at the high-speed scan timing by the ladder program as follows. Perform this operation when turning ON the system power again or turning ON the servo power again.
(1) Storing "Pulse position at shutdown" and "Encoder position at shutdown" to setting parameters Store "Pulse position at shutdown" and "Encoder position at shutdown" having been saved in the M register to the following setting parameters.

Setting parameter "Encoder position at shutdown (all 4 words of OL $\square \square 38$ and OLD \square 3A)"
 Setting parameter "Pulse position at shutdown (all 4 words of OL $\square \square 3 \mathrm{C}$ and $\mathrm{OL} \square \square] 3 \mathrm{E}$)"

At this time, store the data in the buffer selected by the toggle buffer selection flag.
(2) Operation of the "ABS system infinite-length position control data load request"

Turn "OFF" \rightarrow "ON" \rightarrow "OFF" the setting parameter "ABS system infinite-length position control data load request (Bit 2 of OW $\square \square$ 2D)." By this operation, all position data is fixed. Also, the monitor parameter "Zero Point Setting Completion (Bit 3 of IW $\square \square 15$)" turns "ON" and the following monitor parameters become valid.

Monitoring parameter "Encoder position at shutdown (all 4 words of IL $\square \square 38$ and IL $\square \square 3 \mathrm{~A}$)" Monitoring parameter "Pulse position at shutdown (all 4 words of IL $\square \square 3 \mathrm{C}$ and IL $\square \square 3 \mathrm{E}$)"

The system creates position information by the following expression upon "ABS system infinite-length position control data load request."

```
Pulse position = pulse position at shutdown +
    (encoder position-encoder position at shutdown)
```

 *
 * This means the amount of movement while the power is OFF.

In the flow shown in Fig. 6.11, the position data is re-setup by turning ON the position data r setup request.
Re-setup the position data in accordance with the following flow.

Fig. 6.11 Procedure for Re-setup of the Position Data (Flow Chart)

An example of programming the flow in Fig. 6.11 (ladder program) is shown below.
The first axis of module No. 1 is used. If the module No. and/or the axis No. is different, rewrite the motion parameter register No.

Fig. 6.12 Procedure for Re-setup of the Position Information (Ladder Program)

(continued)

【Supplement】

The order of execution of ladder programs H 10 and H 11 necessary for using the absolute encoder on infinite-length axis has no restriction.

7
 THROUGH COMMAND MODE

This chapter describes the through command mode.

7.1 Through command mode

In the through command mode, users can give MECHATROLINK servo commands directly.
The through command mode is valid when Bit 12 of fixed parameter No. 17 "Motion Controller Functi Selection Flags" is set to "through command mode $=1$."
At MECHATROLINK servo commands, command data is sent by using the motion setting parameters frc OW $\square \square 30$ to OW $\square \square \square 37$ (16 bytes), and response data is received by using the motion setting paramets from IW $\square \square 30$ to IW $\square \square 37$ (16 bytes).

* For details of the MECHATROLINK commands, refer to the following manuals.
- High-speed Field Netwórk MECHATROLINK System User's Manual (S1E-S800-26.1)
- High-speed Field Network MECHATROLINK Servo Ćommand User's Manual (S1E-S800-26.
- Σ Series SGM $\square /$ SGD- \square N User's Manual (SIE-S800-26.2)
- Σ Séries SGM $\square /$ SGDB- $\square \mathrm{N}$ User's Manual (SIEZ-S800-26.4)

7.2 Motion parameters to be used when the through command mode is selected

When the through command mode is selected, only the following motion parameters are valid. The ot motion parameters cannot be used.

7.2.1 Motion fixed parameter

Bit 15 of fixed parameter No. 17 "Motion Controller Function Selection Flags"
: Interpolation command segment distributing function invalid selection
7.2.2 Motion setting parameters

Bit 6 of $\mathrm{OW} \square \square 00 \quad:$: Alarm clear
OW $\square \square 30$ to OW $\square \square 37$: MECHATROLINK servo command data (16 bytes)

7.2.3 Motion monitoring parameters

Bit 2 of IW $\square \square 00$,
Bit 7 of IW $\square \square 00$: The motion fixed parameter setting error
IW $\square \square 0 \mathrm{~F}$	$:$ Out of range parameter number
L $\square \square 06$	$:$ Machine coordinate system latch position (LPOS)
IW $\square \square 30$ to $\operatorname{IW} \square \square 37$.	: MECHATROLINK servo command response data (16 bytes)

7.3 Unusable MECHATROLINK commands

Since connection control is performed by the system, do not use the following MECHATROLINK commands unless otherwise intended.

- Connection request command (CONNECT)
- Disconnection request command (DISCONNECT)
- Synchronization request command (SYNC_SET)
- Equipment setup request command (CONFIG)
- Sensor "ON" command (SENS_ON)
- Sensor "OFF" command (SENS_OFF)

7.4 Processes that are performed by the system on MECHATROLINK communications

7.4.1 Connection control

When the system power is turned on, the system automatically performs the process from connection to synchronization with the MECHATROLINK servo to establish MECHATROLINK communication phase 3 (synchronous communications).
At alarm clear, the system automatically clears the MECHATROLINK servo alarm, and returns the MECHATROLINK communication phase to phase 3 (synchronous communications).

7.4.2 Watchdog timer process

In the WDT field of the 16th byte (command data/response data) of the MECHATROLINK servo command, the system automatically creates sending data and detects errors.
Upon error detection, the MECHATROLINK communication phase is brought to phase 2 (asynchronous communications) or phase 4 (communication stop), and "The motion controller is ready for operation" (Bit 7 of the motion monitoring parameter "Running status") is brought to "The motion controller is not ready for operation $=0$."

7.4.3 Interpolation issuing segment distribution

With the interpolation issuing segment distributing function invalid selection (Bit 15 of fixed parameter No. 17 "Motion controller function selection flags") = valid " 0 ", when the issue of the interpolation segment at each high-sped scan is uniform, such a process whereby the issue of the interpolation segment in each MECHATROLINK communication cycle is uniform is performed.
(1) Take the MECHATROLINK communication delay into consideration.

Pay attention to the MECHATROLINK servo command response data delay due to t MECHATROLINK communication delay.

For example, even if the motion command "POSING" or the like is given in the axial st condition, the issue completion status is not turned "OFF" immediately.
Refer to the MECHATROLINK servo command response data after a lapse of the number scans shown below.
(1) When the high-speed scan setting time $<6 \mathrm{~ms}$,

Waiting number of scans $=12 \mathrm{~ms} \div$ high-speed scan setting time $+1 \cdots$ Raise the fraction
(2) When $6 \mathrm{~ms} \leqq$ high-speed scan setting time $\leqq 12 \mathrm{~ms}$,

Waiting number of scans $=12 \mathrm{~ms} \div$ high-speed scan setting time $+2 \cdots$ Raise the fraction
(3) When the high-speed scan setting time $>12 \mathrm{~ms}$,

Waiting number of scans $=2$ scan
(2) Be aware that the high-speed scanning cycle and the MECHATROLINK communicati cycle are asynchronous.

When using interpolation-related MECHATROLINK servo commands (= INTERPOLA] LATCH), be sure to set the interpolation issuing segment distributing function invalid select (Bit 15 of fixed parameter No. 17 "Motion Controller Function Selection Flags") to valid $=0$.
If set to "invalid,". the issue of the interpolation segment in each MECHATROLD communication cycle is not uniform even if the issue of the interpolation segment at each his speed scan is uniform, resulting in irregularities in speed wave form.
(3) Pay attention to the conditions to open the MECHATROLINK servo user constant screen CP-717.
The user constant screen can be opened only when the MECHATROLINK servo comman NOP. The user constant screen cannot be opened when another command is executed.

MACHINE CONTROLLER CP-9200SH/SVB MOTION CONTROLLER USER'S MANUAL

TOKYO OFFICE

New Pier Takeshiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo 105-6881 Japan
Phone 81-3-5402-4511 Fax 81-3-5402-4580
YASKAWA ELECTRIC AMERICA, INC
2121 Norman Dnve South, Waukegan, IL 60085, U.S.A.
Phone 1-847-887-7000 Fax 1-847-887-7370

MOTOMAN INC. HEADQUARTERS

805 Liberty Lane West Carrollton, OH 45449, U.S.A
Phone 1-937-847-6200 Fax 1-937-847-6277
YASKAWA ELÉTRICO DO BRASIL COMÉRCIO LTDA.
Avonida Fagundes Filho. 620 Bairo Saude-Sao Páulo-SP, Brajil CEP: 04304-000
Phone 55-11-5071-2552 Fax 55-11-5581-8795
YASKAWA ELECTRIC EUROPE GmbH
Am Kronberger Hang 2, 65824 Schwalbach, Germany
Phone 49-6196-569-300 Fax 49-8196-888-301
Motoman Robotics Europe AB
Box 504 S 38525 Torsas, Swedan
Phone 46.486-48800 Fax 46-486-41410

Motoman Robotec GmbH

Kammerioldstra β a 1, 85391 Allershausen, Germany
Phone 49-8166-900 Fax 49-8166-9039
YASKAWA ELECTRIC UK LTD.
1 Hunt Hill Orehartion Woods Cumbernauld, G68 9LF, United Kingdom
Phone 44-1236-735000 Fax 44-1236-458182
YASKAWA ELECTRIC KOREA CORPORATION
Kipa Bkdg *1201, 35-4 Youido-dong, Yeongdungpo-Ku, Seoul 150-010, Korea
Phone 82-2-784-7844 Fax 82-2-784-8495
YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.
151 Lorong Chuan, wo4-01, Now Tech Park Singapone 556741, Singapore
Phone 65-282-3003 Fax 65-288-3003
YASKAWA ELECTRIC (SHANGHAD) CO., LTD.
4F No. 18 Aona Road, Waiguociao Frae Trade Zone, Pudong Now Area, Shanghà 200131, Chuna Phone 86-21-5866-3470 Fax 86-21-5866-3869

YATEC ENGINEERING CORPORATION

Shen Hsiang Tang Sung Chiang Building 10 F 146 Sung Chiang Road, Taipei, Taiwan
Phone 886-2-2563-0010 Fax 886-2-2567-4677

YASKAWA ELECTRIC (HK) COMPANY LIMITED

Rm. 2909-10, Hong Kong Plaza, 186-191 Connaught Road Wost, Hong Kong
Phone 852-2803-2385 Fax 852-2547-5773

BEIJING OFFICE

Room No. 301 Office Buikdirg of Beijing Intamational Clut, 21
hanguormenwal Avenue, Baijing 100020, China
Phone 86-10-6532-1850 Fax 86-10-6532-1851
TAIPEI OFFICE
Shen Hsiang Tang Sung Chiang Building 10F 146 Sung Chiang Road, Taipei. Taiwan
Phone 886-2.2563-0010 Fax 886-2-2567-4677
SHANGHAI YASKAWA-TONGJI M \& E CO., LTD.
27 Hui He Road Shanghal Chma 200437
Phone 86-21-6531-4242 Fax 86-21-6553-6060
BELING YASKAWA BEIKE AUTOMATION ENGINEERING CO., LTD.
30 Xue Yuan Road, Haidian, Baijing P.R. China Post Code: 100083
Phone 86-10-6233-2782 fax 86-10-6232-1536
SHOUGANG MOTOMAN ROBOT CO., LTD.
7, Yongchang-North Street, Baijing Economic Technological investment \& Developmant Area,
Boijing 100076, P.R. China
Phone 86-10-6788-0551 Fax 86-10-6788-2878

